Loading…
Trawl ban in a heavily exploited marine environment: Responses in population dynamics of four stomatopod species
Intensive trawling activities in Hong Kong waters have seriously depleted fishery resources and damaged marine benthic habitats over the last four decades. To minimize further destruction and rehabilitate fishery resources, the Hong Kong Government implemented a permanent territory-wide trawling clo...
Saved in:
Published in: | Scientific reports 2018-12, Vol.8 (1), p.17876-14, Article 17876 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Intensive trawling activities in Hong Kong waters have seriously depleted fishery resources and damaged marine benthic habitats over the last four decades. To minimize further destruction and rehabilitate fishery resources, the Hong Kong Government implemented a permanent territory-wide trawling closure on 31 December 2012. Such a trawl ban creates a unique opportunity to investigate recoveries in ecosystem structure and function following a major shift in disturbance regime by removing impacts from a major gear. This study was designed to test the hypothesis that dominant predatory mantis shrimps, including
Harpiosquilla harpax
,
Miyakella nepa
,
Oratosquillina interrupta
, and
Oratosquilla oratoria
would show signs of recovery following the trawl ban. Their population dynamics were investigated before and after the trawl ban. The results showed that their mean weight, mean carapace length and proportion of large-sized individuals increased significantly 3.5 years after the trawl ban, whilst their abundance, biomass and maximum length remained unchanged. This study suggests that the stomatopod assemblage in the human-dominated Hong Kong waters shows some initial signs of possible recovery following the trawl ban but also highlights the complexity of implementing fishery management and detecting changes resulted from management measures in a heavily urbanized seascape where many biotic and abiotic factors can influence their population dynamics. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-35804-7 |