Loading…

Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model

[Display omitted] •Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2019-01, Vol.173, p.27-35
Main Authors: Lakkadwala, Sushant, Singh, Jagdish
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3
cites cdi_FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3
container_end_page 35
container_issue
container_start_page 27
container_title Colloids and surfaces, B, Biointerfaces
container_volume 173
creator Lakkadwala, Sushant
Singh, Jagdish
description [Display omitted] •Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across the barrier into tumor-scaffold.•Tf-PFV liposomes demonstrated excellent anti-tumor efficacy. Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p 
doi_str_mv 10.1016/j.colsurfb.2018.09.047
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6296250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776518306581</els_id><sourcerecordid>2114690971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3</originalsourceid><addsrcrecordid>eNqFkU1v3CAQhq2qVbNN-xcijr3YAX-AfalardIPKVIv7RlhGHZZYWYLeNX8ifzmEm0StaeeQMw7z4x4quqK0YZRxq8PjUaf1mjnpqVsbOjU0F68qDZsFF3dd1y8rDZ0akUtBB8uqjcpHSilbc_E6-qioy1nXc831f0WawPenSDeEbTE4G-M6-y0C0QFQyB6zC64meR9xHW3J94dMeGiPAkq4FHF7LSHRCxGsvMOZ69SLnWS16U8RdhFSMlhIGtyYVeopLBPLkckc1Tlfg4uWPZ4W72yyid493heVj8_3_zYfq1vv3_5tv10W-uBjrm2WqlJgx2FoJ1t52kYdS-YtYZZbjqhRs7Z3FOqjdV2nDXv9GCM6jmFoRWqu6w-nLnHdV7AaAg5Ki-P0S0q3klUTv5bCW4vd3iSvJ14O9ACeP8IiPhrhZTl4pIG71UAXJNsGev5RCfBSpSfozpiShHs8xhG5YNMeZBPMuWDTEknWWSWxqu_l3xue7JXAh_PAShfdXIQZdIOggbjIugsDbr_zfgDny67AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114690971</pqid></control><display><type>article</type><title>Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model</title><source>ScienceDirect Journals</source><creator>Lakkadwala, Sushant ; Singh, Jagdish</creator><creatorcontrib>Lakkadwala, Sushant ; Singh, Jagdish</creatorcontrib><description>[Display omitted] •Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across the barrier into tumor-scaffold.•Tf-PFV liposomes demonstrated excellent anti-tumor efficacy. Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p &lt; 0.05) higher apoptosis in U87 cells. Significantly (p &lt; 0.05) higher translocation of dual functionalized liposomes across the BBB and delivering chemotherapeutic drugs to the glioblastoma tumor cells inside PLGA-Chitosan scaffold resulted in approximately 52% tumor cell death, using in vitro brain tumor model.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2018.09.047</identifier><identifier>PMID: 30261346</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Biological Transport ; Blood brain barrier ; Blood-Brain Barrier - metabolism ; Brain - drug effects ; Brain - metabolism ; Brain - pathology ; Brain Neoplasms - blood supply ; Brain Neoplasms - drug therapy ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cell Line, Tumor ; Cell-Penetrating Peptides - chemistry ; Cell-Penetrating Peptides - metabolism ; Chitosan - chemistry ; Co-delivery ; Doxorubicin - chemistry ; Doxorubicin - pharmacology ; Drug Delivery Systems - methods ; Dual-functionalized liposomes ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Erlotinib Hydrochloride - chemistry ; Erlotinib Hydrochloride - pharmacology ; Glioblastoma ; Glioblastoma - blood supply ; Glioblastoma - drug therapy ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Humans ; In vitro brain tumor model ; Liposomes - chemistry ; Liposomes - metabolism ; Models, Biological ; Neuroglia - drug effects ; Neuroglia - metabolism ; Neuroglia - pathology ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Protein Binding ; Receptors, Transferrin - metabolism ; Tissue Scaffolds ; Transferrin - chemistry ; Transferrin - metabolism</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2019-01, Vol.173, p.27-35</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3</citedby><cites>FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30261346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakkadwala, Sushant</creatorcontrib><creatorcontrib>Singh, Jagdish</creatorcontrib><title>Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted] •Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across the barrier into tumor-scaffold.•Tf-PFV liposomes demonstrated excellent anti-tumor efficacy. Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p &lt; 0.05) higher apoptosis in U87 cells. Significantly (p &lt; 0.05) higher translocation of dual functionalized liposomes across the BBB and delivering chemotherapeutic drugs to the glioblastoma tumor cells inside PLGA-Chitosan scaffold resulted in approximately 52% tumor cell death, using in vitro brain tumor model.</description><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Biological Transport</subject><subject>Blood brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - blood supply</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Cell-Penetrating Peptides - metabolism</subject><subject>Chitosan - chemistry</subject><subject>Co-delivery</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacology</subject><subject>Drug Delivery Systems - methods</subject><subject>Dual-functionalized liposomes</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Erlotinib Hydrochloride - chemistry</subject><subject>Erlotinib Hydrochloride - pharmacology</subject><subject>Glioblastoma</subject><subject>Glioblastoma - blood supply</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>In vitro brain tumor model</subject><subject>Liposomes - chemistry</subject><subject>Liposomes - metabolism</subject><subject>Models, Biological</subject><subject>Neuroglia - drug effects</subject><subject>Neuroglia - metabolism</subject><subject>Neuroglia - pathology</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Protein Binding</subject><subject>Receptors, Transferrin - metabolism</subject><subject>Tissue Scaffolds</subject><subject>Transferrin - chemistry</subject><subject>Transferrin - metabolism</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v3CAQhq2qVbNN-xcijr3YAX-AfalardIPKVIv7RlhGHZZYWYLeNX8ifzmEm0StaeeQMw7z4x4quqK0YZRxq8PjUaf1mjnpqVsbOjU0F68qDZsFF3dd1y8rDZ0akUtBB8uqjcpHSilbc_E6-qioy1nXc831f0WawPenSDeEbTE4G-M6-y0C0QFQyB6zC64meR9xHW3J94dMeGiPAkq4FHF7LSHRCxGsvMOZ69SLnWS16U8RdhFSMlhIGtyYVeopLBPLkckc1Tlfg4uWPZ4W72yyid493heVj8_3_zYfq1vv3_5tv10W-uBjrm2WqlJgx2FoJ1t52kYdS-YtYZZbjqhRs7Z3FOqjdV2nDXv9GCM6jmFoRWqu6w-nLnHdV7AaAg5Ki-P0S0q3klUTv5bCW4vd3iSvJ14O9ACeP8IiPhrhZTl4pIG71UAXJNsGev5RCfBSpSfozpiShHs8xhG5YNMeZBPMuWDTEknWWSWxqu_l3xue7JXAh_PAShfdXIQZdIOggbjIugsDbr_zfgDny67AQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lakkadwala, Sushant</creator><creator>Singh, Jagdish</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model</title><author>Lakkadwala, Sushant ; Singh, Jagdish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Biological Transport</topic><topic>Blood brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - blood supply</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Cell-Penetrating Peptides - metabolism</topic><topic>Chitosan - chemistry</topic><topic>Co-delivery</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacology</topic><topic>Drug Delivery Systems - methods</topic><topic>Dual-functionalized liposomes</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Erlotinib Hydrochloride - chemistry</topic><topic>Erlotinib Hydrochloride - pharmacology</topic><topic>Glioblastoma</topic><topic>Glioblastoma - blood supply</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>In vitro brain tumor model</topic><topic>Liposomes - chemistry</topic><topic>Liposomes - metabolism</topic><topic>Models, Biological</topic><topic>Neuroglia - drug effects</topic><topic>Neuroglia - metabolism</topic><topic>Neuroglia - pathology</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Protein Binding</topic><topic>Receptors, Transferrin - metabolism</topic><topic>Tissue Scaffolds</topic><topic>Transferrin - chemistry</topic><topic>Transferrin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakkadwala, Sushant</creatorcontrib><creatorcontrib>Singh, Jagdish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakkadwala, Sushant</au><au>Singh, Jagdish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>173</volume><spage>27</spage><epage>35</epage><pages>27-35</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted] •Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across the barrier into tumor-scaffold.•Tf-PFV liposomes demonstrated excellent anti-tumor efficacy. Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p &lt; 0.05) higher apoptosis in U87 cells. Significantly (p &lt; 0.05) higher translocation of dual functionalized liposomes across the BBB and delivering chemotherapeutic drugs to the glioblastoma tumor cells inside PLGA-Chitosan scaffold resulted in approximately 52% tumor cell death, using in vitro brain tumor model.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30261346</pmid><doi>10.1016/j.colsurfb.2018.09.047</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2019-01, Vol.173, p.27-35
issn 0927-7765
1873-4367
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6296250
source ScienceDirect Journals
subjects Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Apoptosis - drug effects
Biological Transport
Blood brain barrier
Blood-Brain Barrier - metabolism
Brain - drug effects
Brain - metabolism
Brain - pathology
Brain Neoplasms - blood supply
Brain Neoplasms - drug therapy
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Cell Line, Tumor
Cell-Penetrating Peptides - chemistry
Cell-Penetrating Peptides - metabolism
Chitosan - chemistry
Co-delivery
Doxorubicin - chemistry
Doxorubicin - pharmacology
Drug Delivery Systems - methods
Dual-functionalized liposomes
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Endothelial Cells - pathology
Erlotinib Hydrochloride - chemistry
Erlotinib Hydrochloride - pharmacology
Glioblastoma
Glioblastoma - blood supply
Glioblastoma - drug therapy
Glioblastoma - metabolism
Glioblastoma - pathology
Humans
In vitro brain tumor model
Liposomes - chemistry
Liposomes - metabolism
Models, Biological
Neuroglia - drug effects
Neuroglia - metabolism
Neuroglia - pathology
Polylactic Acid-Polyglycolic Acid Copolymer - chemistry
Protein Binding
Receptors, Transferrin - metabolism
Tissue Scaffolds
Transferrin - chemistry
Transferrin - metabolism
title Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-delivery%20of%20doxorubicin%20and%20erlotinib%20through%20liposomal%20nanoparticles%20for%20glioblastoma%20tumor%20regression%20using%20an%20in%20vitro%20brain%20tumor%20model&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Lakkadwala,%20Sushant&rft.date=2019-01-01&rft.volume=173&rft.spage=27&rft.epage=35&rft.pages=27-35&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2018.09.047&rft_dat=%3Cproquest_pubme%3E2114690971%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2114690971&rft_id=info:pmid/30261346&rfr_iscdi=true