Loading…
Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model
[Display omitted] •Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across...
Saved in:
Published in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2019-01, Vol.173, p.27-35 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3 |
container_end_page | 35 |
container_issue | |
container_start_page | 27 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 173 |
creator | Lakkadwala, Sushant Singh, Jagdish |
description | [Display omitted]
•Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across the barrier into tumor-scaffold.•Tf-PFV liposomes demonstrated excellent anti-tumor efficacy.
Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p |
doi_str_mv | 10.1016/j.colsurfb.2018.09.047 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6296250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776518306581</els_id><sourcerecordid>2114690971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3</originalsourceid><addsrcrecordid>eNqFkU1v3CAQhq2qVbNN-xcijr3YAX-AfalardIPKVIv7RlhGHZZYWYLeNX8ifzmEm0StaeeQMw7z4x4quqK0YZRxq8PjUaf1mjnpqVsbOjU0F68qDZsFF3dd1y8rDZ0akUtBB8uqjcpHSilbc_E6-qioy1nXc831f0WawPenSDeEbTE4G-M6-y0C0QFQyB6zC64meR9xHW3J94dMeGiPAkq4FHF7LSHRCxGsvMOZ69SLnWS16U8RdhFSMlhIGtyYVeopLBPLkckc1Tlfg4uWPZ4W72yyid493heVj8_3_zYfq1vv3_5tv10W-uBjrm2WqlJgx2FoJ1t52kYdS-YtYZZbjqhRs7Z3FOqjdV2nDXv9GCM6jmFoRWqu6w-nLnHdV7AaAg5Ki-P0S0q3klUTv5bCW4vd3iSvJ14O9ACeP8IiPhrhZTl4pIG71UAXJNsGev5RCfBSpSfozpiShHs8xhG5YNMeZBPMuWDTEknWWSWxqu_l3xue7JXAh_PAShfdXIQZdIOggbjIugsDbr_zfgDny67AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114690971</pqid></control><display><type>article</type><title>Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model</title><source>ScienceDirect Journals</source><creator>Lakkadwala, Sushant ; Singh, Jagdish</creator><creatorcontrib>Lakkadwala, Sushant ; Singh, Jagdish</creatorcontrib><description>[Display omitted]
•Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across the barrier into tumor-scaffold.•Tf-PFV liposomes demonstrated excellent anti-tumor efficacy.
Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p < 0.05) higher apoptosis in U87 cells. Significantly (p < 0.05) higher translocation of dual functionalized liposomes across the BBB and delivering chemotherapeutic drugs to the glioblastoma tumor cells inside PLGA-Chitosan scaffold resulted in approximately 52% tumor cell death, using in vitro brain tumor model.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2018.09.047</identifier><identifier>PMID: 30261346</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Biological Transport ; Blood brain barrier ; Blood-Brain Barrier - metabolism ; Brain - drug effects ; Brain - metabolism ; Brain - pathology ; Brain Neoplasms - blood supply ; Brain Neoplasms - drug therapy ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cell Line, Tumor ; Cell-Penetrating Peptides - chemistry ; Cell-Penetrating Peptides - metabolism ; Chitosan - chemistry ; Co-delivery ; Doxorubicin - chemistry ; Doxorubicin - pharmacology ; Drug Delivery Systems - methods ; Dual-functionalized liposomes ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Erlotinib Hydrochloride - chemistry ; Erlotinib Hydrochloride - pharmacology ; Glioblastoma ; Glioblastoma - blood supply ; Glioblastoma - drug therapy ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Humans ; In vitro brain tumor model ; Liposomes - chemistry ; Liposomes - metabolism ; Models, Biological ; Neuroglia - drug effects ; Neuroglia - metabolism ; Neuroglia - pathology ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Protein Binding ; Receptors, Transferrin - metabolism ; Tissue Scaffolds ; Transferrin - chemistry ; Transferrin - metabolism</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2019-01, Vol.173, p.27-35</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3</citedby><cites>FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30261346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakkadwala, Sushant</creatorcontrib><creatorcontrib>Singh, Jagdish</creatorcontrib><title>Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted]
•Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across the barrier into tumor-scaffold.•Tf-PFV liposomes demonstrated excellent anti-tumor efficacy.
Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p < 0.05) higher apoptosis in U87 cells. Significantly (p < 0.05) higher translocation of dual functionalized liposomes across the BBB and delivering chemotherapeutic drugs to the glioblastoma tumor cells inside PLGA-Chitosan scaffold resulted in approximately 52% tumor cell death, using in vitro brain tumor model.</description><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Biological Transport</subject><subject>Blood brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - blood supply</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Cell-Penetrating Peptides - metabolism</subject><subject>Chitosan - chemistry</subject><subject>Co-delivery</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacology</subject><subject>Drug Delivery Systems - methods</subject><subject>Dual-functionalized liposomes</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Erlotinib Hydrochloride - chemistry</subject><subject>Erlotinib Hydrochloride - pharmacology</subject><subject>Glioblastoma</subject><subject>Glioblastoma - blood supply</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>In vitro brain tumor model</subject><subject>Liposomes - chemistry</subject><subject>Liposomes - metabolism</subject><subject>Models, Biological</subject><subject>Neuroglia - drug effects</subject><subject>Neuroglia - metabolism</subject><subject>Neuroglia - pathology</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Protein Binding</subject><subject>Receptors, Transferrin - metabolism</subject><subject>Tissue Scaffolds</subject><subject>Transferrin - chemistry</subject><subject>Transferrin - metabolism</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v3CAQhq2qVbNN-xcijr3YAX-AfalardIPKVIv7RlhGHZZYWYLeNX8ifzmEm0StaeeQMw7z4x4quqK0YZRxq8PjUaf1mjnpqVsbOjU0F68qDZsFF3dd1y8rDZ0akUtBB8uqjcpHSilbc_E6-qioy1nXc831f0WawPenSDeEbTE4G-M6-y0C0QFQyB6zC64meR9xHW3J94dMeGiPAkq4FHF7LSHRCxGsvMOZ69SLnWS16U8RdhFSMlhIGtyYVeopLBPLkckc1Tlfg4uWPZ4W72yyid493heVj8_3_zYfq1vv3_5tv10W-uBjrm2WqlJgx2FoJ1t52kYdS-YtYZZbjqhRs7Z3FOqjdV2nDXv9GCM6jmFoRWqu6w-nLnHdV7AaAg5Ki-P0S0q3klUTv5bCW4vd3iSvJ14O9ACeP8IiPhrhZTl4pIG71UAXJNsGev5RCfBSpSfozpiShHs8xhG5YNMeZBPMuWDTEknWWSWxqu_l3xue7JXAh_PAShfdXIQZdIOggbjIugsDbr_zfgDny67AQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lakkadwala, Sushant</creator><creator>Singh, Jagdish</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model</title><author>Lakkadwala, Sushant ; Singh, Jagdish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Biological Transport</topic><topic>Blood brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - blood supply</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Cell-Penetrating Peptides - metabolism</topic><topic>Chitosan - chemistry</topic><topic>Co-delivery</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacology</topic><topic>Drug Delivery Systems - methods</topic><topic>Dual-functionalized liposomes</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Erlotinib Hydrochloride - chemistry</topic><topic>Erlotinib Hydrochloride - pharmacology</topic><topic>Glioblastoma</topic><topic>Glioblastoma - blood supply</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>In vitro brain tumor model</topic><topic>Liposomes - chemistry</topic><topic>Liposomes - metabolism</topic><topic>Models, Biological</topic><topic>Neuroglia - drug effects</topic><topic>Neuroglia - metabolism</topic><topic>Neuroglia - pathology</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Protein Binding</topic><topic>Receptors, Transferrin - metabolism</topic><topic>Tissue Scaffolds</topic><topic>Transferrin - chemistry</topic><topic>Transferrin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakkadwala, Sushant</creatorcontrib><creatorcontrib>Singh, Jagdish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakkadwala, Sushant</au><au>Singh, Jagdish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>173</volume><spage>27</spage><epage>35</epage><pages>27-35</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted]
•Transferrin-PFVYLI (Tf-PFV) liposomes were prepared by post-insertion method.•Tf-PFV liposomes showed Tf receptor targeting and enhanced cell penetration.•Cytotoxicity and hemolysis studies exhibited biocompatibility of the liposomes.•Increased transport of Tf-PFV liposomes across the barrier into tumor-scaffold.•Tf-PFV liposomes demonstrated excellent anti-tumor efficacy.
Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p < 0.05) higher apoptosis in U87 cells. Significantly (p < 0.05) higher translocation of dual functionalized liposomes across the BBB and delivering chemotherapeutic drugs to the glioblastoma tumor cells inside PLGA-Chitosan scaffold resulted in approximately 52% tumor cell death, using in vitro brain tumor model.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30261346</pmid><doi>10.1016/j.colsurfb.2018.09.047</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2019-01, Vol.173, p.27-35 |
issn | 0927-7765 1873-4367 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6296250 |
source | ScienceDirect Journals |
subjects | Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Apoptosis - drug effects Biological Transport Blood brain barrier Blood-Brain Barrier - metabolism Brain - drug effects Brain - metabolism Brain - pathology Brain Neoplasms - blood supply Brain Neoplasms - drug therapy Brain Neoplasms - metabolism Brain Neoplasms - pathology Cell Line, Tumor Cell-Penetrating Peptides - chemistry Cell-Penetrating Peptides - metabolism Chitosan - chemistry Co-delivery Doxorubicin - chemistry Doxorubicin - pharmacology Drug Delivery Systems - methods Dual-functionalized liposomes Endothelial Cells - drug effects Endothelial Cells - metabolism Endothelial Cells - pathology Erlotinib Hydrochloride - chemistry Erlotinib Hydrochloride - pharmacology Glioblastoma Glioblastoma - blood supply Glioblastoma - drug therapy Glioblastoma - metabolism Glioblastoma - pathology Humans In vitro brain tumor model Liposomes - chemistry Liposomes - metabolism Models, Biological Neuroglia - drug effects Neuroglia - metabolism Neuroglia - pathology Polylactic Acid-Polyglycolic Acid Copolymer - chemistry Protein Binding Receptors, Transferrin - metabolism Tissue Scaffolds Transferrin - chemistry Transferrin - metabolism |
title | Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-delivery%20of%20doxorubicin%20and%20erlotinib%20through%20liposomal%20nanoparticles%20for%20glioblastoma%20tumor%20regression%20using%20an%20in%20vitro%20brain%20tumor%20model&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Lakkadwala,%20Sushant&rft.date=2019-01-01&rft.volume=173&rft.spage=27&rft.epage=35&rft.pages=27-35&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2018.09.047&rft_dat=%3Cproquest_pubme%3E2114690971%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-fcaa9cef87703f2b958c471ffd1f6d37a8661b400cdfcf8bc63c5dda460e527a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2114690971&rft_id=info:pmid/30261346&rfr_iscdi=true |