Loading…
Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate
Amazonian peatlands store a large amount of soil organic carbon (SOC), and its fate under a future changing climate is unknown. Here, we use a process-based peatland biogeochemistry model to quantify the carbon accumulation for peatland and nonpeatland ecosystems in the Pastaza-Marañon foreland basi...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (49), p.12407-12412 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-207f794adcaf721eba335c02bb72570b3e72af7ad2a421417afab844a7061b6a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-207f794adcaf721eba335c02bb72570b3e72af7ad2a421417afab844a7061b6a3 |
container_end_page | 12412 |
container_issue | 49 |
container_start_page | 12407 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Wang, Sirui Zhuang, Qianlai Lähteenoja, Outi Draper, Frederick C. Cadillo-Quiroz, Hinsby |
description | Amazonian peatlands store a large amount of soil organic carbon (SOC), and its fate under a future changing climate is unknown. Here, we use a process-based peatland biogeochemistry model to quantify the carbon accumulation for peatland and nonpeatland ecosystems in the Pastaza-Marañon foreland basin (PMFB) in the Peruvian Amazon from 12,000 y before present to AD 2100. Model simulations indicate that warming accelerates peat SOC loss, while increasing precipitation accelerates peat SOC accumulation at millennial time scales. The uncertain parameters and spatial variation of climate are significant sources of uncertainty to modeled peat carbon accumulation. Under warmer and presumably wetter conditions over the 21st century, SOC accumulation rate in the PMFB slows down to 7.9 (4.3–12.2) g·C·m−2·y−1 from the current rate of 16.1 (9.1–23.7) g·C·m−2·y−1, and the region may turn into a carbon source to the atmosphere at −53.3 (−66.8 to −41.2) g·C·m−2·y−1 (negative indicates source), depending on the level of warming. Peatland ecosystems show a higher vulnerability than nonpeatland ecosystems, as indicated by the ratio of their soil carbon density changes (ranging from 3.9 to 5.8). This is primarily due to larger peatlands carbon stocks and more dramatic responses of their aerobic and anaerobic decompositions in comparison with nonpeatland ecosystems under future climate conditions. Peatland and nonpeatland soils in the PMFB may lose up to 0.4 (0.32–0.52) Pg·C by AD 2100 with the largest loss from palm swamp. The carbon-dense Amazonian peatland may switch from a current carbon sink into a source in the 21st century. |
doi_str_mv | 10.1073/pnas.1801317115 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26573674</jstor_id><sourcerecordid>26573674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-207f794adcaf721eba335c02bb72570b3e72af7ad2a421417afab844a7061b6a3</originalsourceid><addsrcrecordid>eNpVkc2LFDEQxYMo7rh69qQEPPduVT463RdhWfyCBT3o1VDdnZ7J2JOMSUbQv94Ms456CtT71csrHmPPEa4QjLzeB8pX2AFKNIj6AVsh9Ni0qoeHbAUgTNMpoS7Yk5y3ANDrDh6zCwlKa4n9in39FIsLxdPC88bPhc8p7jjxkdIQA88-fOMl1kGOhzQ67gO_2dGvGDwFvndUFgpT5ocwuXRc21BY-7Dm4-J3VNxT9mimJbtn9-8l-_L2zefb983dx3cfbm_umlEpWRoBZja9ommk2Qh0A0mpRxDDYIQ2MEhnRFVoEqQEKjQ009ApRQZaHFqSl-z1yXd_GHZuGutJiRa7TzVF-mkjefu_EvzGruMP24q-gx6qwat7gxS_H1wudlsPDjWzFaiNMih1X6nrEzWmmHNy8_kHBHssxB4LsX8LqRsv_w125v80UIEXJ2CbS0xnXbTayNYo-Rsv1ZIB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157471359</pqid></control><display><type>article</type><title>Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Wang, Sirui ; Zhuang, Qianlai ; Lähteenoja, Outi ; Draper, Frederick C. ; Cadillo-Quiroz, Hinsby</creator><creatorcontrib>Wang, Sirui ; Zhuang, Qianlai ; Lähteenoja, Outi ; Draper, Frederick C. ; Cadillo-Quiroz, Hinsby</creatorcontrib><description>Amazonian peatlands store a large amount of soil organic carbon (SOC), and its fate under a future changing climate is unknown. Here, we use a process-based peatland biogeochemistry model to quantify the carbon accumulation for peatland and nonpeatland ecosystems in the Pastaza-Marañon foreland basin (PMFB) in the Peruvian Amazon from 12,000 y before present to AD 2100. Model simulations indicate that warming accelerates peat SOC loss, while increasing precipitation accelerates peat SOC accumulation at millennial time scales. The uncertain parameters and spatial variation of climate are significant sources of uncertainty to modeled peat carbon accumulation. Under warmer and presumably wetter conditions over the 21st century, SOC accumulation rate in the PMFB slows down to 7.9 (4.3–12.2) g·C·m−2·y−1 from the current rate of 16.1 (9.1–23.7) g·C·m−2·y−1, and the region may turn into a carbon source to the atmosphere at −53.3 (−66.8 to −41.2) g·C·m−2·y−1 (negative indicates source), depending on the level of warming. Peatland ecosystems show a higher vulnerability than nonpeatland ecosystems, as indicated by the ratio of their soil carbon density changes (ranging from 3.9 to 5.8). This is primarily due to larger peatlands carbon stocks and more dramatic responses of their aerobic and anaerobic decompositions in comparison with nonpeatland ecosystems under future climate conditions. Peatland and nonpeatland soils in the PMFB may lose up to 0.4 (0.32–0.52) Pg·C by AD 2100 with the largest loss from palm swamp. The carbon-dense Amazonian peatland may switch from a current carbon sink into a source in the 21st century.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1801317115</identifier><identifier>PMID: 30455319</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accumulation ; Anaerobic conditions ; Biogeochemistry ; Carbon sequestration ; Carbon sinks ; Carbon sources ; Climate change ; Climatic conditions ; Computer simulation ; Ecosystems ; Organic carbon ; Organic soils ; Parameter uncertainty ; Peat ; Peatlands ; Physical Sciences ; Precipitation ; Simulation ; Soil density</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (49), p.12407-12412</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 4, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-207f794adcaf721eba335c02bb72570b3e72af7ad2a421417afab844a7061b6a3</citedby><cites>FETCH-LOGICAL-c443t-207f794adcaf721eba335c02bb72570b3e72af7ad2a421417afab844a7061b6a3</cites><orcidid>0000-0002-4908-4597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26573674$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26573674$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30455319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Sirui</creatorcontrib><creatorcontrib>Zhuang, Qianlai</creatorcontrib><creatorcontrib>Lähteenoja, Outi</creatorcontrib><creatorcontrib>Draper, Frederick C.</creatorcontrib><creatorcontrib>Cadillo-Quiroz, Hinsby</creatorcontrib><title>Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Amazonian peatlands store a large amount of soil organic carbon (SOC), and its fate under a future changing climate is unknown. Here, we use a process-based peatland biogeochemistry model to quantify the carbon accumulation for peatland and nonpeatland ecosystems in the Pastaza-Marañon foreland basin (PMFB) in the Peruvian Amazon from 12,000 y before present to AD 2100. Model simulations indicate that warming accelerates peat SOC loss, while increasing precipitation accelerates peat SOC accumulation at millennial time scales. The uncertain parameters and spatial variation of climate are significant sources of uncertainty to modeled peat carbon accumulation. Under warmer and presumably wetter conditions over the 21st century, SOC accumulation rate in the PMFB slows down to 7.9 (4.3–12.2) g·C·m−2·y−1 from the current rate of 16.1 (9.1–23.7) g·C·m−2·y−1, and the region may turn into a carbon source to the atmosphere at −53.3 (−66.8 to −41.2) g·C·m−2·y−1 (negative indicates source), depending on the level of warming. Peatland ecosystems show a higher vulnerability than nonpeatland ecosystems, as indicated by the ratio of their soil carbon density changes (ranging from 3.9 to 5.8). This is primarily due to larger peatlands carbon stocks and more dramatic responses of their aerobic and anaerobic decompositions in comparison with nonpeatland ecosystems under future climate conditions. Peatland and nonpeatland soils in the PMFB may lose up to 0.4 (0.32–0.52) Pg·C by AD 2100 with the largest loss from palm swamp. The carbon-dense Amazonian peatland may switch from a current carbon sink into a source in the 21st century.</description><subject>Accumulation</subject><subject>Anaerobic conditions</subject><subject>Biogeochemistry</subject><subject>Carbon sequestration</subject><subject>Carbon sinks</subject><subject>Carbon sources</subject><subject>Climate change</subject><subject>Climatic conditions</subject><subject>Computer simulation</subject><subject>Ecosystems</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Parameter uncertainty</subject><subject>Peat</subject><subject>Peatlands</subject><subject>Physical Sciences</subject><subject>Precipitation</subject><subject>Simulation</subject><subject>Soil density</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkc2LFDEQxYMo7rh69qQEPPduVT463RdhWfyCBT3o1VDdnZ7J2JOMSUbQv94Ms456CtT71csrHmPPEa4QjLzeB8pX2AFKNIj6AVsh9Ni0qoeHbAUgTNMpoS7Yk5y3ANDrDh6zCwlKa4n9in39FIsLxdPC88bPhc8p7jjxkdIQA88-fOMl1kGOhzQ67gO_2dGvGDwFvndUFgpT5ocwuXRc21BY-7Dm4-J3VNxT9mimJbtn9-8l-_L2zefb983dx3cfbm_umlEpWRoBZja9ommk2Qh0A0mpRxDDYIQ2MEhnRFVoEqQEKjQ009ApRQZaHFqSl-z1yXd_GHZuGutJiRa7TzVF-mkjefu_EvzGruMP24q-gx6qwat7gxS_H1wudlsPDjWzFaiNMih1X6nrEzWmmHNy8_kHBHssxB4LsX8LqRsv_w125v80UIEXJ2CbS0xnXbTayNYo-Rsv1ZIB</recordid><startdate>20181204</startdate><enddate>20181204</enddate><creator>Wang, Sirui</creator><creator>Zhuang, Qianlai</creator><creator>Lähteenoja, Outi</creator><creator>Draper, Frederick C.</creator><creator>Cadillo-Quiroz, Hinsby</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4908-4597</orcidid></search><sort><creationdate>20181204</creationdate><title>Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate</title><author>Wang, Sirui ; Zhuang, Qianlai ; Lähteenoja, Outi ; Draper, Frederick C. ; Cadillo-Quiroz, Hinsby</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-207f794adcaf721eba335c02bb72570b3e72af7ad2a421417afab844a7061b6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Anaerobic conditions</topic><topic>Biogeochemistry</topic><topic>Carbon sequestration</topic><topic>Carbon sinks</topic><topic>Carbon sources</topic><topic>Climate change</topic><topic>Climatic conditions</topic><topic>Computer simulation</topic><topic>Ecosystems</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Parameter uncertainty</topic><topic>Peat</topic><topic>Peatlands</topic><topic>Physical Sciences</topic><topic>Precipitation</topic><topic>Simulation</topic><topic>Soil density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sirui</creatorcontrib><creatorcontrib>Zhuang, Qianlai</creatorcontrib><creatorcontrib>Lähteenoja, Outi</creatorcontrib><creatorcontrib>Draper, Frederick C.</creatorcontrib><creatorcontrib>Cadillo-Quiroz, Hinsby</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sirui</au><au>Zhuang, Qianlai</au><au>Lähteenoja, Outi</au><au>Draper, Frederick C.</au><au>Cadillo-Quiroz, Hinsby</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-04</date><risdate>2018</risdate><volume>115</volume><issue>49</issue><spage>12407</spage><epage>12412</epage><pages>12407-12412</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Amazonian peatlands store a large amount of soil organic carbon (SOC), and its fate under a future changing climate is unknown. Here, we use a process-based peatland biogeochemistry model to quantify the carbon accumulation for peatland and nonpeatland ecosystems in the Pastaza-Marañon foreland basin (PMFB) in the Peruvian Amazon from 12,000 y before present to AD 2100. Model simulations indicate that warming accelerates peat SOC loss, while increasing precipitation accelerates peat SOC accumulation at millennial time scales. The uncertain parameters and spatial variation of climate are significant sources of uncertainty to modeled peat carbon accumulation. Under warmer and presumably wetter conditions over the 21st century, SOC accumulation rate in the PMFB slows down to 7.9 (4.3–12.2) g·C·m−2·y−1 from the current rate of 16.1 (9.1–23.7) g·C·m−2·y−1, and the region may turn into a carbon source to the atmosphere at −53.3 (−66.8 to −41.2) g·C·m−2·y−1 (negative indicates source), depending on the level of warming. Peatland ecosystems show a higher vulnerability than nonpeatland ecosystems, as indicated by the ratio of their soil carbon density changes (ranging from 3.9 to 5.8). This is primarily due to larger peatlands carbon stocks and more dramatic responses of their aerobic and anaerobic decompositions in comparison with nonpeatland ecosystems under future climate conditions. Peatland and nonpeatland soils in the PMFB may lose up to 0.4 (0.32–0.52) Pg·C by AD 2100 with the largest loss from palm swamp. The carbon-dense Amazonian peatland may switch from a current carbon sink into a source in the 21st century.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30455319</pmid><doi>10.1073/pnas.1801317115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4908-4597</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (49), p.12407-12412 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298090 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | Accumulation Anaerobic conditions Biogeochemistry Carbon sequestration Carbon sinks Carbon sources Climate change Climatic conditions Computer simulation Ecosystems Organic carbon Organic soils Parameter uncertainty Peat Peatlands Physical Sciences Precipitation Simulation Soil density |
title | Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20shift%20from%20a%20carbon%20sink%20to%20a%20source%20in%20Amazonian%20peatlands%20under%20a%20changing%20climate&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Sirui&rft.date=2018-12-04&rft.volume=115&rft.issue=49&rft.spage=12407&rft.epage=12412&rft.pages=12407-12412&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1801317115&rft_dat=%3Cjstor_pubme%3E26573674%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-207f794adcaf721eba335c02bb72570b3e72af7ad2a421417afab844a7061b6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157471359&rft_id=info:pmid/30455319&rft_jstor_id=26573674&rfr_iscdi=true |