Loading…

Mathematical-model-guided development of full-thickness epidermal equivalent

Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key deter...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-12, Vol.8 (1), p.17999-8, Article 17999
Main Authors: Kumamoto, Junichi, Nakanishi, Shinobu, Makita, Mio, Uesaka, Masaaki, Yasugahira, Yusuke, Kobayashi, Yasuaki, Nagayama, Masaharu, Denda, Sumiko, Denda, Mitsuhiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983
cites cdi_FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983
container_end_page 8
container_issue 1
container_start_page 17999
container_title Scientific reports
container_volume 8
creator Kumamoto, Junichi
Nakanishi, Shinobu
Makita, Mio
Uesaka, Masaaki
Yasugahira, Yusuke
Kobayashi, Yasuaki
Nagayama, Masaharu
Denda, Sumiko
Denda, Mitsuhiro
description Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value.
doi_str_mv 10.1038/s41598-018-36647-y
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6301960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159334090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS0EolXpH2CBRmLDxq1f48emEqpKWymIDawtx76TTOsZp_ZMpPx7nKa0hQXe2NL57rn3-iD0kZIzSrg-L4K2RmNCNeZSCoV3b9AxI6LFjDP29tX7CJ2WckfqaZkR1LxHR5y0iithjtHiu5vWMLip9y7iIQWIeDX3AUITYAsxbQYYpyZ1TTfHiKd17-9HKKWBTYXy4GIDD3O_dbFiH9C7zsUCp0_3Cfr17ern5Q1e_Li-vfy6wL5VasJGa-KZ8gCUdEIuyVIZ4iVXJBhqNPVaiCozLo2koQuBeaoVFVK0II3R_ARdHHw383KA4Gvr7KLd5H5weWeT6-3fytiv7SptreSEGkmqwZcng5weZiiTHfriIUY3QpqLZfVvjVZEiYp-_ge9S3Me63qPFOeCmL0hO1A-p1IydM_DUGL3edlDXrbmZR_zsrta9On1Gs8lf9KpAD8ApUrjCvJL7__Y_gZfeqFU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159334090</pqid></control><display><type>article</type><title>Mathematical-model-guided development of full-thickness epidermal equivalent</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kumamoto, Junichi ; Nakanishi, Shinobu ; Makita, Mio ; Uesaka, Masaaki ; Yasugahira, Yusuke ; Kobayashi, Yasuaki ; Nagayama, Masaharu ; Denda, Sumiko ; Denda, Mitsuhiro</creator><creatorcontrib>Kumamoto, Junichi ; Nakanishi, Shinobu ; Makita, Mio ; Uesaka, Masaaki ; Yasugahira, Yusuke ; Kobayashi, Yasuaki ; Nagayama, Masaharu ; Denda, Sumiko ; Denda, Mitsuhiro</creatorcontrib><description>Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36647-y</identifier><identifier>PMID: 30573749</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/51 ; 13/89 ; 14/28 ; 14/34 ; 14/63 ; 631/114 ; 631/1647/767/2202 ; Cell culture ; Cell Culture Techniques - methods ; Cell Proliferation ; Cells, Cultured ; Chondroitin sulfate ; Computer Simulation ; Drug Development - methods ; Epidermis ; Epidermis - pathology ; Fibers ; Filaggrin ; Gene silencing ; Homeostasis ; Humanities and Social Sciences ; Humans ; Infant, Newborn ; Keratinocytes ; Keratinocytes - cytology ; Keratinocytes - physiology ; Lipid structure ; Male ; Mathematical models ; Melanoma ; Models, Theoretical ; multidisciplinary ; Organ Size ; Polyesters - chemistry ; Science ; Science (multidisciplinary) ; siRNA ; Skin, Artificial ; Stratum corneum ; Textile fibers ; Textiles ; Tissue Engineering - methods ; Tissue Scaffolds ; Water loss ; Yes-associated protein ; Zonula occludens-1 protein</subject><ispartof>Scientific reports, 2018-12, Vol.8 (1), p.17999-8, Article 17999</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983</citedby><cites>FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2159334090/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2159334090?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30573749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumamoto, Junichi</creatorcontrib><creatorcontrib>Nakanishi, Shinobu</creatorcontrib><creatorcontrib>Makita, Mio</creatorcontrib><creatorcontrib>Uesaka, Masaaki</creatorcontrib><creatorcontrib>Yasugahira, Yusuke</creatorcontrib><creatorcontrib>Kobayashi, Yasuaki</creatorcontrib><creatorcontrib>Nagayama, Masaharu</creatorcontrib><creatorcontrib>Denda, Sumiko</creatorcontrib><creatorcontrib>Denda, Mitsuhiro</creatorcontrib><title>Mathematical-model-guided development of full-thickness epidermal equivalent</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value.</description><subject>13/1</subject><subject>13/51</subject><subject>13/89</subject><subject>14/28</subject><subject>14/34</subject><subject>14/63</subject><subject>631/114</subject><subject>631/1647/767/2202</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Chondroitin sulfate</subject><subject>Computer Simulation</subject><subject>Drug Development - methods</subject><subject>Epidermis</subject><subject>Epidermis - pathology</subject><subject>Fibers</subject><subject>Filaggrin</subject><subject>Gene silencing</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Keratinocytes</subject><subject>Keratinocytes - cytology</subject><subject>Keratinocytes - physiology</subject><subject>Lipid structure</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Melanoma</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Organ Size</subject><subject>Polyesters - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>siRNA</subject><subject>Skin, Artificial</subject><subject>Stratum corneum</subject><subject>Textile fibers</subject><subject>Textiles</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Water loss</subject><subject>Yes-associated protein</subject><subject>Zonula occludens-1 protein</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtvEzEUhS0EolXpH2CBRmLDxq1f48emEqpKWymIDawtx76TTOsZp_ZMpPx7nKa0hQXe2NL57rn3-iD0kZIzSrg-L4K2RmNCNeZSCoV3b9AxI6LFjDP29tX7CJ2WckfqaZkR1LxHR5y0iithjtHiu5vWMLip9y7iIQWIeDX3AUITYAsxbQYYpyZ1TTfHiKd17-9HKKWBTYXy4GIDD3O_dbFiH9C7zsUCp0_3Cfr17ern5Q1e_Li-vfy6wL5VasJGa-KZ8gCUdEIuyVIZ4iVXJBhqNPVaiCozLo2koQuBeaoVFVK0II3R_ARdHHw383KA4Gvr7KLd5H5weWeT6-3fytiv7SptreSEGkmqwZcng5weZiiTHfriIUY3QpqLZfVvjVZEiYp-_ge9S3Me63qPFOeCmL0hO1A-p1IydM_DUGL3edlDXrbmZR_zsrta9On1Gs8lf9KpAD8ApUrjCvJL7__Y_gZfeqFU</recordid><startdate>20181220</startdate><enddate>20181220</enddate><creator>Kumamoto, Junichi</creator><creator>Nakanishi, Shinobu</creator><creator>Makita, Mio</creator><creator>Uesaka, Masaaki</creator><creator>Yasugahira, Yusuke</creator><creator>Kobayashi, Yasuaki</creator><creator>Nagayama, Masaharu</creator><creator>Denda, Sumiko</creator><creator>Denda, Mitsuhiro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181220</creationdate><title>Mathematical-model-guided development of full-thickness epidermal equivalent</title><author>Kumamoto, Junichi ; Nakanishi, Shinobu ; Makita, Mio ; Uesaka, Masaaki ; Yasugahira, Yusuke ; Kobayashi, Yasuaki ; Nagayama, Masaharu ; Denda, Sumiko ; Denda, Mitsuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/51</topic><topic>13/89</topic><topic>14/28</topic><topic>14/34</topic><topic>14/63</topic><topic>631/114</topic><topic>631/1647/767/2202</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Chondroitin sulfate</topic><topic>Computer Simulation</topic><topic>Drug Development - methods</topic><topic>Epidermis</topic><topic>Epidermis - pathology</topic><topic>Fibers</topic><topic>Filaggrin</topic><topic>Gene silencing</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Keratinocytes</topic><topic>Keratinocytes - cytology</topic><topic>Keratinocytes - physiology</topic><topic>Lipid structure</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Melanoma</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Organ Size</topic><topic>Polyesters - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>siRNA</topic><topic>Skin, Artificial</topic><topic>Stratum corneum</topic><topic>Textile fibers</topic><topic>Textiles</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Water loss</topic><topic>Yes-associated protein</topic><topic>Zonula occludens-1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumamoto, Junichi</creatorcontrib><creatorcontrib>Nakanishi, Shinobu</creatorcontrib><creatorcontrib>Makita, Mio</creatorcontrib><creatorcontrib>Uesaka, Masaaki</creatorcontrib><creatorcontrib>Yasugahira, Yusuke</creatorcontrib><creatorcontrib>Kobayashi, Yasuaki</creatorcontrib><creatorcontrib>Nagayama, Masaharu</creatorcontrib><creatorcontrib>Denda, Sumiko</creatorcontrib><creatorcontrib>Denda, Mitsuhiro</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumamoto, Junichi</au><au>Nakanishi, Shinobu</au><au>Makita, Mio</au><au>Uesaka, Masaaki</au><au>Yasugahira, Yusuke</au><au>Kobayashi, Yasuaki</au><au>Nagayama, Masaharu</au><au>Denda, Sumiko</au><au>Denda, Mitsuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical-model-guided development of full-thickness epidermal equivalent</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-12-20</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>17999</spage><epage>8</epage><pages>17999-8</pages><artnum>17999</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30573749</pmid><doi>10.1038/s41598-018-36647-y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-12, Vol.8 (1), p.17999-8, Article 17999
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6301960
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/51
13/89
14/28
14/34
14/63
631/114
631/1647/767/2202
Cell culture
Cell Culture Techniques - methods
Cell Proliferation
Cells, Cultured
Chondroitin sulfate
Computer Simulation
Drug Development - methods
Epidermis
Epidermis - pathology
Fibers
Filaggrin
Gene silencing
Homeostasis
Humanities and Social Sciences
Humans
Infant, Newborn
Keratinocytes
Keratinocytes - cytology
Keratinocytes - physiology
Lipid structure
Male
Mathematical models
Melanoma
Models, Theoretical
multidisciplinary
Organ Size
Polyesters - chemistry
Science
Science (multidisciplinary)
siRNA
Skin, Artificial
Stratum corneum
Textile fibers
Textiles
Tissue Engineering - methods
Tissue Scaffolds
Water loss
Yes-associated protein
Zonula occludens-1 protein
title Mathematical-model-guided development of full-thickness epidermal equivalent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical-model-guided%20development%20of%20full-thickness%20epidermal%20equivalent&rft.jtitle=Scientific%20reports&rft.au=Kumamoto,%20Junichi&rft.date=2018-12-20&rft.volume=8&rft.issue=1&rft.spage=17999&rft.epage=8&rft.pages=17999-8&rft.artnum=17999&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36647-y&rft_dat=%3Cproquest_pubme%3E2159334090%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159334090&rft_id=info:pmid/30573749&rfr_iscdi=true