Loading…
Mathematical-model-guided development of full-thickness epidermal equivalent
Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key deter...
Saved in:
Published in: | Scientific reports 2018-12, Vol.8 (1), p.17999-8, Article 17999 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983 |
---|---|
cites | cdi_FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 17999 |
container_title | Scientific reports |
container_volume | 8 |
creator | Kumamoto, Junichi Nakanishi, Shinobu Makita, Mio Uesaka, Masaaki Yasugahira, Yusuke Kobayashi, Yasuaki Nagayama, Masaharu Denda, Sumiko Denda, Mitsuhiro |
description | Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value. |
doi_str_mv | 10.1038/s41598-018-36647-y |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6301960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159334090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS0EolXpH2CBRmLDxq1f48emEqpKWymIDawtx76TTOsZp_ZMpPx7nKa0hQXe2NL57rn3-iD0kZIzSrg-L4K2RmNCNeZSCoV3b9AxI6LFjDP29tX7CJ2WckfqaZkR1LxHR5y0iithjtHiu5vWMLip9y7iIQWIeDX3AUITYAsxbQYYpyZ1TTfHiKd17-9HKKWBTYXy4GIDD3O_dbFiH9C7zsUCp0_3Cfr17ern5Q1e_Li-vfy6wL5VasJGa-KZ8gCUdEIuyVIZ4iVXJBhqNPVaiCozLo2koQuBeaoVFVK0II3R_ARdHHw383KA4Gvr7KLd5H5weWeT6-3fytiv7SptreSEGkmqwZcng5weZiiTHfriIUY3QpqLZfVvjVZEiYp-_ge9S3Me63qPFOeCmL0hO1A-p1IydM_DUGL3edlDXrbmZR_zsrta9On1Gs8lf9KpAD8ApUrjCvJL7__Y_gZfeqFU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159334090</pqid></control><display><type>article</type><title>Mathematical-model-guided development of full-thickness epidermal equivalent</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kumamoto, Junichi ; Nakanishi, Shinobu ; Makita, Mio ; Uesaka, Masaaki ; Yasugahira, Yusuke ; Kobayashi, Yasuaki ; Nagayama, Masaharu ; Denda, Sumiko ; Denda, Mitsuhiro</creator><creatorcontrib>Kumamoto, Junichi ; Nakanishi, Shinobu ; Makita, Mio ; Uesaka, Masaaki ; Yasugahira, Yusuke ; Kobayashi, Yasuaki ; Nagayama, Masaharu ; Denda, Sumiko ; Denda, Mitsuhiro</creatorcontrib><description>Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36647-y</identifier><identifier>PMID: 30573749</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/51 ; 13/89 ; 14/28 ; 14/34 ; 14/63 ; 631/114 ; 631/1647/767/2202 ; Cell culture ; Cell Culture Techniques - methods ; Cell Proliferation ; Cells, Cultured ; Chondroitin sulfate ; Computer Simulation ; Drug Development - methods ; Epidermis ; Epidermis - pathology ; Fibers ; Filaggrin ; Gene silencing ; Homeostasis ; Humanities and Social Sciences ; Humans ; Infant, Newborn ; Keratinocytes ; Keratinocytes - cytology ; Keratinocytes - physiology ; Lipid structure ; Male ; Mathematical models ; Melanoma ; Models, Theoretical ; multidisciplinary ; Organ Size ; Polyesters - chemistry ; Science ; Science (multidisciplinary) ; siRNA ; Skin, Artificial ; Stratum corneum ; Textile fibers ; Textiles ; Tissue Engineering - methods ; Tissue Scaffolds ; Water loss ; Yes-associated protein ; Zonula occludens-1 protein</subject><ispartof>Scientific reports, 2018-12, Vol.8 (1), p.17999-8, Article 17999</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983</citedby><cites>FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2159334090/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2159334090?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30573749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumamoto, Junichi</creatorcontrib><creatorcontrib>Nakanishi, Shinobu</creatorcontrib><creatorcontrib>Makita, Mio</creatorcontrib><creatorcontrib>Uesaka, Masaaki</creatorcontrib><creatorcontrib>Yasugahira, Yusuke</creatorcontrib><creatorcontrib>Kobayashi, Yasuaki</creatorcontrib><creatorcontrib>Nagayama, Masaharu</creatorcontrib><creatorcontrib>Denda, Sumiko</creatorcontrib><creatorcontrib>Denda, Mitsuhiro</creatorcontrib><title>Mathematical-model-guided development of full-thickness epidermal equivalent</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value.</description><subject>13/1</subject><subject>13/51</subject><subject>13/89</subject><subject>14/28</subject><subject>14/34</subject><subject>14/63</subject><subject>631/114</subject><subject>631/1647/767/2202</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Chondroitin sulfate</subject><subject>Computer Simulation</subject><subject>Drug Development - methods</subject><subject>Epidermis</subject><subject>Epidermis - pathology</subject><subject>Fibers</subject><subject>Filaggrin</subject><subject>Gene silencing</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Keratinocytes</subject><subject>Keratinocytes - cytology</subject><subject>Keratinocytes - physiology</subject><subject>Lipid structure</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Melanoma</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Organ Size</subject><subject>Polyesters - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>siRNA</subject><subject>Skin, Artificial</subject><subject>Stratum corneum</subject><subject>Textile fibers</subject><subject>Textiles</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Water loss</subject><subject>Yes-associated protein</subject><subject>Zonula occludens-1 protein</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtvEzEUhS0EolXpH2CBRmLDxq1f48emEqpKWymIDawtx76TTOsZp_ZMpPx7nKa0hQXe2NL57rn3-iD0kZIzSrg-L4K2RmNCNeZSCoV3b9AxI6LFjDP29tX7CJ2WckfqaZkR1LxHR5y0iithjtHiu5vWMLip9y7iIQWIeDX3AUITYAsxbQYYpyZ1TTfHiKd17-9HKKWBTYXy4GIDD3O_dbFiH9C7zsUCp0_3Cfr17ern5Q1e_Li-vfy6wL5VasJGa-KZ8gCUdEIuyVIZ4iVXJBhqNPVaiCozLo2koQuBeaoVFVK0II3R_ARdHHw383KA4Gvr7KLd5H5weWeT6-3fytiv7SptreSEGkmqwZcng5weZiiTHfriIUY3QpqLZfVvjVZEiYp-_ge9S3Me63qPFOeCmL0hO1A-p1IydM_DUGL3edlDXrbmZR_zsrta9On1Gs8lf9KpAD8ApUrjCvJL7__Y_gZfeqFU</recordid><startdate>20181220</startdate><enddate>20181220</enddate><creator>Kumamoto, Junichi</creator><creator>Nakanishi, Shinobu</creator><creator>Makita, Mio</creator><creator>Uesaka, Masaaki</creator><creator>Yasugahira, Yusuke</creator><creator>Kobayashi, Yasuaki</creator><creator>Nagayama, Masaharu</creator><creator>Denda, Sumiko</creator><creator>Denda, Mitsuhiro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181220</creationdate><title>Mathematical-model-guided development of full-thickness epidermal equivalent</title><author>Kumamoto, Junichi ; Nakanishi, Shinobu ; Makita, Mio ; Uesaka, Masaaki ; Yasugahira, Yusuke ; Kobayashi, Yasuaki ; Nagayama, Masaharu ; Denda, Sumiko ; Denda, Mitsuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/51</topic><topic>13/89</topic><topic>14/28</topic><topic>14/34</topic><topic>14/63</topic><topic>631/114</topic><topic>631/1647/767/2202</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Chondroitin sulfate</topic><topic>Computer Simulation</topic><topic>Drug Development - methods</topic><topic>Epidermis</topic><topic>Epidermis - pathology</topic><topic>Fibers</topic><topic>Filaggrin</topic><topic>Gene silencing</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Keratinocytes</topic><topic>Keratinocytes - cytology</topic><topic>Keratinocytes - physiology</topic><topic>Lipid structure</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Melanoma</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Organ Size</topic><topic>Polyesters - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>siRNA</topic><topic>Skin, Artificial</topic><topic>Stratum corneum</topic><topic>Textile fibers</topic><topic>Textiles</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Water loss</topic><topic>Yes-associated protein</topic><topic>Zonula occludens-1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumamoto, Junichi</creatorcontrib><creatorcontrib>Nakanishi, Shinobu</creatorcontrib><creatorcontrib>Makita, Mio</creatorcontrib><creatorcontrib>Uesaka, Masaaki</creatorcontrib><creatorcontrib>Yasugahira, Yusuke</creatorcontrib><creatorcontrib>Kobayashi, Yasuaki</creatorcontrib><creatorcontrib>Nagayama, Masaharu</creatorcontrib><creatorcontrib>Denda, Sumiko</creatorcontrib><creatorcontrib>Denda, Mitsuhiro</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumamoto, Junichi</au><au>Nakanishi, Shinobu</au><au>Makita, Mio</au><au>Uesaka, Masaaki</au><au>Yasugahira, Yusuke</au><au>Kobayashi, Yasuaki</au><au>Nagayama, Masaharu</au><au>Denda, Sumiko</au><au>Denda, Mitsuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical-model-guided development of full-thickness epidermal equivalent</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-12-20</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>17999</spage><epage>8</epage><pages>17999-8</pages><artnum>17999</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Epidermal equivalents prepared with passaged keratinocytes are typically 10–20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30573749</pmid><doi>10.1038/s41598-018-36647-y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-12, Vol.8 (1), p.17999-8, Article 17999 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6301960 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/51 13/89 14/28 14/34 14/63 631/114 631/1647/767/2202 Cell culture Cell Culture Techniques - methods Cell Proliferation Cells, Cultured Chondroitin sulfate Computer Simulation Drug Development - methods Epidermis Epidermis - pathology Fibers Filaggrin Gene silencing Homeostasis Humanities and Social Sciences Humans Infant, Newborn Keratinocytes Keratinocytes - cytology Keratinocytes - physiology Lipid structure Male Mathematical models Melanoma Models, Theoretical multidisciplinary Organ Size Polyesters - chemistry Science Science (multidisciplinary) siRNA Skin, Artificial Stratum corneum Textile fibers Textiles Tissue Engineering - methods Tissue Scaffolds Water loss Yes-associated protein Zonula occludens-1 protein |
title | Mathematical-model-guided development of full-thickness epidermal equivalent |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical-model-guided%20development%20of%20full-thickness%20epidermal%20equivalent&rft.jtitle=Scientific%20reports&rft.au=Kumamoto,%20Junichi&rft.date=2018-12-20&rft.volume=8&rft.issue=1&rft.spage=17999&rft.epage=8&rft.pages=17999-8&rft.artnum=17999&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36647-y&rft_dat=%3Cproquest_pubme%3E2159334090%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-9880c27cee10f46b0b790c6370d91981c84427c236961dfdd2c18714645e69983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159334090&rft_id=info:pmid/30573749&rfr_iscdi=true |