Loading…
Fate of bacterial indicators and Salmonella in biofilm developed on ultrafiltration membranes treating secondary effluents of domestic wastewater
The fate of representative indicator and pathogenic bacteria on ultrafiltration (UF)-membrane surfaces treating secondary wastewater effluent, as well as their reaction to common biofouling-removal techniques was investigated. Field-condition experiments showed that the number of heterotrophic bacte...
Saved in:
Published in: | Scientific reports 2018-12, Vol.8 (1), p.18066-10, Article 18066 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fate of representative indicator and pathogenic bacteria on ultrafiltration (UF)-membrane surfaces treating secondary wastewater effluent, as well as their reaction to common biofouling-removal techniques was investigated. Field-condition experiments showed that the number of heterotrophic bacteria, fecal coliforms,
E. coli
and
Salmonella
on membrane surface increased rapidly and continuously until the end of the experiment, reaching 9, 6.5, 6, and 2.4 logs, respectively. Similar results were obtained under controlled laboratory conditions. However, the increase in the bacterial numbers was dependent on the supply of fresh wastewater. Quantitative real-time PCR verified the behavior of attached
E. coli
cells, although the numbers were 1–2 logs higher compared to the standard culture-based method. The number of attached bacteria was positively correlated to increases in DNA and protein content and negatively correlated to the membrane flux.
In-situ
membrane cleaning using sodium hypochlorite significantly reduced the number of attached bacteria. However, the effect was temporary and affected bacterial cell cultivability rather than viability. Taken together, these findings suggest that, under the studied conditions, indicator and pathogenic bacteria can initiate rapid biofilm development, persist on UF membrane surfaces, and survive membrane cleaning with sodium hypochlorite. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-36406-z |