Loading…

Minimally Invasive, Stereotactic, Wireless, Percutaneous Pedicle Screw Placement in the Lumbar Spine: Accuracy Rates With 182 Consecutive Screws

Standard fluoroscopic navigation and stereotactic computed tomography-guided lumbar pedicle screw instrumentation traditionally relied on the placement of Kirshner wires (K-wires) to ensure accurate screw placement. The use of K-wires, however, is associated with a risk of morbidity due to potential...

Full description

Saved in:
Bibliographic Details
Published in:International journal of spine surgery 2018-12, Vol.12 (6), p.650-658
Main Authors: Sadrameli, Saeed S, Jafrani, Ryan, Staub, Blake N, Radaideh, Majdi, Holman, Paul J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Standard fluoroscopic navigation and stereotactic computed tomography-guided lumbar pedicle screw instrumentation traditionally relied on the placement of Kirshner wires (K-wires) to ensure accurate screw placement. The use of K-wires, however, is associated with a risk of morbidity due to potential ventral displacement into the retroperitoneum. We report our experience using a computer image-guided, wireless method for pedicle screw placement. We hypothesize that minimally invasive, wireless pedicle screw placement is as accurate and safe as the traditional technique using K-wires while decreasing operative time and avoiding potential complications associated with K-wires. We conducted a retrospective review of 42 consecutive patients who underwent a stereotactic-guided, wireless lumbar pedicle screw placement. All screws were placed to provide fixation to a variety of interbody fusion constructs including anterior lumbar interbody fusion, lateral interbody fusion, and transforaminal lumbar interbody fusion. The procedures were performed using the O-arm intraoperative imaging system with StealthStation navigation (Medtronic, Memphis, TN) and Medtronic navigated instrumentation. After placing a percutaneous navigation frame into the posterior superior iliac spine or onto an adjacent spinous process, an intraoperative O-arm image was obtained to allow subsequent StealthStation navigation. Para-median incisions were selected to allow precise percutaneous access to the target pedicles. The pedicles were cannulated using either a stereotactic drill or a novel awl-tipped tap along with a low-speed/high-torque power driver. The initial trajectory into the pedicle was recorded on the Medtronic StealthStation prior to removal of the drill or awl-tap, creating a "virtual" K-wire rather than inserting an actual K-wire to allow subsequent tapping and screw insertion. Accurate screw placement is achieved by following the virtual path as an exact computer-aided design model of the screw traversing the pedicle is projected onto the display and by using audible and tactile feedback. A second O-arm scan was obtained to confirm accuracy of screw placement. A total of 20 women and 22 men (average age = 56 years) underwent a total of 182 pedicle screw placements using the stereotactic, wireless technique. The total breach rate was 9.9%, with a clinically significant breach rate of 0% (defined as >2 mm medial breach or >4 mm lateral breach) and a clinical complication rate of
ISSN:2211-4599
2211-4599
DOI:10.14444/5081