Loading…
A Computational Cardiac Model for the Adaptation to Pulmonary Arterial Hypertension in the Rat
Pulmonary arterial hypertension (PAH) imposes pressure overload on the right ventricle (RV), leading to RV enlargement via the growth of cardiac myocytes and remodeling of the collagen fiber architecture. The effects of these alterations on the functional behavior of the right ventricular free wall...
Saved in:
Published in: | Annals of biomedical engineering 2019-01, Vol.47 (1), p.138-153 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-8cef5aadba8d3807d25302fe854018c7b0a8d6a421c5b05b4674678bf888305f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-8cef5aadba8d3807d25302fe854018c7b0a8d6a421c5b05b4674678bf888305f3 |
container_end_page | 153 |
container_issue | 1 |
container_start_page | 138 |
container_title | Annals of biomedical engineering |
container_volume | 47 |
creator | Avazmohammadi, Reza Mendiola, Emilio A. Soares, João S. Li, David S. Chen, Zhiqiang Merchant, Samer Hsu, Edward W. Vanderslice, Peter Dixon, Richard A. F. Sacks, Michael S. |
description | Pulmonary arterial hypertension (PAH) imposes pressure overload on the right ventricle (RV), leading to RV enlargement
via
the growth of cardiac myocytes and remodeling of the collagen fiber architecture. The effects of these alterations on the functional behavior of the right ventricular free wall (RVFW) and organ-level cardiac function remain largely unexplored. Computational heart models in the rat (RHMs) of the normal and hypertensive states can be quite valuable in simulating the effects of PAH on cardiac function to gain insights into the pathophysiology of underlying myocardium remodeling. We thus developed high-fidelity biventricular finite element RHMs for the normal and post-PAH hypertensive states using extensive experimental data collected from rat hearts. We then applied the RHM to investigate the transmural nature of RVFW remodeling and its connection to wall stress elevation under PAH. We found a strong correlation between the longitudinally-dominated fiber-level adaptation of the RVFW and the transmural alterations of relevant wall stress components. We further conducted several numerical experiments to gain new insights on how the RV responds both normally and in the post-PAH state. We found that the effect of pressure overload alone on the increased contractility of the RV is comparable to the effects of changes in the RV geometry and stiffness. Furthermore, our RHMs provided fresh perspectives on long-standing questions of the functional role of the interventricular septum in RV function. Specifically, we demonstrated that an inaccurate identification of the mechanical adaptation of the septum can lead to a significant underestimation of RVFW contractility in the post-PAH state. These findings show how integrated experimental–computational models can facilitate a more comprehensive understanding of the cardiac remodeling events during PAH. |
doi_str_mv | 10.1007/s10439-018-02130-y |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6318016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112953000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8cef5aadba8d3807d25302fe854018c7b0a8d6a421c5b05b4674678bf888305f3</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVIabZpv0AOQdBLLk5H1h_Ll8KyNE0gJaG01wjZlhMH23IlubDfvpN1kqY9BAQSzO-9mdEj5IjBKQMoPkUGgpcZMJ1Bzjhk2z2yYrLgWam02icrgBIyVSpxQN7FeA_AmObyLTngkCuRK74iN2u68cM0J5s6P9qebmxoOlvTb75xPW19oOnO0XVjpwWhydPruR8QDlu6DsmFDmXn28nhe4wPSDfuRN9tek_etLaP7sPjfUh-nn35sTnPLq--XmzWl1ktCpEyXbtWWttUVjdcQ9HkEkdsnZYCt6uLCrCgrMhZLSuQlVAFHl21WmsOsuWH5PPiO83V4JrajSnY3kyhG3BM421n_q2M3Z259b-N4kwDU2hw8mgQ_K_ZxWSGLtau7-3o_BxNzpgoQPNSIvrxP_TezwH_bkflSAAAUvlC1cHHGFz7PAwD8xCfWeIzuKDZxWe2KDp-ucaz5CkvBPgCRCyNty787f2K7R8wE6aF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112953000</pqid></control><display><type>article</type><title>A Computational Cardiac Model for the Adaptation to Pulmonary Arterial Hypertension in the Rat</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Avazmohammadi, Reza ; Mendiola, Emilio A. ; Soares, João S. ; Li, David S. ; Chen, Zhiqiang ; Merchant, Samer ; Hsu, Edward W. ; Vanderslice, Peter ; Dixon, Richard A. F. ; Sacks, Michael S.</creator><creatorcontrib>Avazmohammadi, Reza ; Mendiola, Emilio A. ; Soares, João S. ; Li, David S. ; Chen, Zhiqiang ; Merchant, Samer ; Hsu, Edward W. ; Vanderslice, Peter ; Dixon, Richard A. F. ; Sacks, Michael S.</creatorcontrib><description>Pulmonary arterial hypertension (PAH) imposes pressure overload on the right ventricle (RV), leading to RV enlargement
via
the growth of cardiac myocytes and remodeling of the collagen fiber architecture. The effects of these alterations on the functional behavior of the right ventricular free wall (RVFW) and organ-level cardiac function remain largely unexplored. Computational heart models in the rat (RHMs) of the normal and hypertensive states can be quite valuable in simulating the effects of PAH on cardiac function to gain insights into the pathophysiology of underlying myocardium remodeling. We thus developed high-fidelity biventricular finite element RHMs for the normal and post-PAH hypertensive states using extensive experimental data collected from rat hearts. We then applied the RHM to investigate the transmural nature of RVFW remodeling and its connection to wall stress elevation under PAH. We found a strong correlation between the longitudinally-dominated fiber-level adaptation of the RVFW and the transmural alterations of relevant wall stress components. We further conducted several numerical experiments to gain new insights on how the RV responds both normally and in the post-PAH state. We found that the effect of pressure overload alone on the increased contractility of the RV is comparable to the effects of changes in the RV geometry and stiffness. Furthermore, our RHMs provided fresh perspectives on long-standing questions of the functional role of the interventricular septum in RV function. Specifically, we demonstrated that an inaccurate identification of the mechanical adaptation of the septum can lead to a significant underestimation of RVFW contractility in the post-PAH state. These findings show how integrated experimental–computational models can facilitate a more comprehensive understanding of the cardiac remodeling events during PAH.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-018-02130-y</identifier><identifier>PMID: 30264263</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Animal models ; Animals ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Blood pressure ; Cardiac function ; Cardiomyocytes ; Classical Mechanics ; Collagen ; Computation ; Computer applications ; Computer Simulation ; Disease Models, Animal ; Enlargement ; Finite element method ; Heart ; Hypertension ; Hypertension, Pulmonary - pathology ; Hypertension, Pulmonary - physiopathology ; Male ; Mathematical models ; Models, Cardiovascular ; Muscle contraction ; Myocardium ; Myocytes ; Pressure effects ; Pulmonary hypertension ; Rats ; Rats, Inbred F344 ; Septum ; Stiffness ; Ventricle ; Ventricular Function, Right ; Ventricular Remodeling</subject><ispartof>Annals of biomedical engineering, 2019-01, Vol.47 (1), p.138-153</ispartof><rights>Biomedical Engineering Society 2018</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8cef5aadba8d3807d25302fe854018c7b0a8d6a421c5b05b4674678bf888305f3</citedby><cites>FETCH-LOGICAL-c474t-8cef5aadba8d3807d25302fe854018c7b0a8d6a421c5b05b4674678bf888305f3</cites><orcidid>0000-0002-3199-2204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30264263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avazmohammadi, Reza</creatorcontrib><creatorcontrib>Mendiola, Emilio A.</creatorcontrib><creatorcontrib>Soares, João S.</creatorcontrib><creatorcontrib>Li, David S.</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Merchant, Samer</creatorcontrib><creatorcontrib>Hsu, Edward W.</creatorcontrib><creatorcontrib>Vanderslice, Peter</creatorcontrib><creatorcontrib>Dixon, Richard A. F.</creatorcontrib><creatorcontrib>Sacks, Michael S.</creatorcontrib><title>A Computational Cardiac Model for the Adaptation to Pulmonary Arterial Hypertension in the Rat</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Pulmonary arterial hypertension (PAH) imposes pressure overload on the right ventricle (RV), leading to RV enlargement
via
the growth of cardiac myocytes and remodeling of the collagen fiber architecture. The effects of these alterations on the functional behavior of the right ventricular free wall (RVFW) and organ-level cardiac function remain largely unexplored. Computational heart models in the rat (RHMs) of the normal and hypertensive states can be quite valuable in simulating the effects of PAH on cardiac function to gain insights into the pathophysiology of underlying myocardium remodeling. We thus developed high-fidelity biventricular finite element RHMs for the normal and post-PAH hypertensive states using extensive experimental data collected from rat hearts. We then applied the RHM to investigate the transmural nature of RVFW remodeling and its connection to wall stress elevation under PAH. We found a strong correlation between the longitudinally-dominated fiber-level adaptation of the RVFW and the transmural alterations of relevant wall stress components. We further conducted several numerical experiments to gain new insights on how the RV responds both normally and in the post-PAH state. We found that the effect of pressure overload alone on the increased contractility of the RV is comparable to the effects of changes in the RV geometry and stiffness. Furthermore, our RHMs provided fresh perspectives on long-standing questions of the functional role of the interventricular septum in RV function. Specifically, we demonstrated that an inaccurate identification of the mechanical adaptation of the septum can lead to a significant underestimation of RVFW contractility in the post-PAH state. These findings show how integrated experimental–computational models can facilitate a more comprehensive understanding of the cardiac remodeling events during PAH.</description><subject>Adaptation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Blood pressure</subject><subject>Cardiac function</subject><subject>Cardiomyocytes</subject><subject>Classical Mechanics</subject><subject>Collagen</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Disease Models, Animal</subject><subject>Enlargement</subject><subject>Finite element method</subject><subject>Heart</subject><subject>Hypertension</subject><subject>Hypertension, Pulmonary - pathology</subject><subject>Hypertension, Pulmonary - physiopathology</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Models, Cardiovascular</subject><subject>Muscle contraction</subject><subject>Myocardium</subject><subject>Myocytes</subject><subject>Pressure effects</subject><subject>Pulmonary hypertension</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Septum</subject><subject>Stiffness</subject><subject>Ventricle</subject><subject>Ventricular Function, Right</subject><subject>Ventricular Remodeling</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r3DAQxUVIabZpv0AOQdBLLk5H1h_Ll8KyNE0gJaG01wjZlhMH23IlubDfvpN1kqY9BAQSzO-9mdEj5IjBKQMoPkUGgpcZMJ1Bzjhk2z2yYrLgWam02icrgBIyVSpxQN7FeA_AmObyLTngkCuRK74iN2u68cM0J5s6P9qebmxoOlvTb75xPW19oOnO0XVjpwWhydPruR8QDlu6DsmFDmXn28nhe4wPSDfuRN9tek_etLaP7sPjfUh-nn35sTnPLq--XmzWl1ktCpEyXbtWWttUVjdcQ9HkEkdsnZYCt6uLCrCgrMhZLSuQlVAFHl21WmsOsuWH5PPiO83V4JrajSnY3kyhG3BM421n_q2M3Z259b-N4kwDU2hw8mgQ_K_ZxWSGLtau7-3o_BxNzpgoQPNSIvrxP_TezwH_bkflSAAAUvlC1cHHGFz7PAwD8xCfWeIzuKDZxWe2KDp-ucaz5CkvBPgCRCyNty787f2K7R8wE6aF</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Avazmohammadi, Reza</creator><creator>Mendiola, Emilio A.</creator><creator>Soares, João S.</creator><creator>Li, David S.</creator><creator>Chen, Zhiqiang</creator><creator>Merchant, Samer</creator><creator>Hsu, Edward W.</creator><creator>Vanderslice, Peter</creator><creator>Dixon, Richard A. F.</creator><creator>Sacks, Michael S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3199-2204</orcidid></search><sort><creationdate>20190101</creationdate><title>A Computational Cardiac Model for the Adaptation to Pulmonary Arterial Hypertension in the Rat</title><author>Avazmohammadi, Reza ; Mendiola, Emilio A. ; Soares, João S. ; Li, David S. ; Chen, Zhiqiang ; Merchant, Samer ; Hsu, Edward W. ; Vanderslice, Peter ; Dixon, Richard A. F. ; Sacks, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8cef5aadba8d3807d25302fe854018c7b0a8d6a421c5b05b4674678bf888305f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Blood pressure</topic><topic>Cardiac function</topic><topic>Cardiomyocytes</topic><topic>Classical Mechanics</topic><topic>Collagen</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Disease Models, Animal</topic><topic>Enlargement</topic><topic>Finite element method</topic><topic>Heart</topic><topic>Hypertension</topic><topic>Hypertension, Pulmonary - pathology</topic><topic>Hypertension, Pulmonary - physiopathology</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Models, Cardiovascular</topic><topic>Muscle contraction</topic><topic>Myocardium</topic><topic>Myocytes</topic><topic>Pressure effects</topic><topic>Pulmonary hypertension</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Septum</topic><topic>Stiffness</topic><topic>Ventricle</topic><topic>Ventricular Function, Right</topic><topic>Ventricular Remodeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avazmohammadi, Reza</creatorcontrib><creatorcontrib>Mendiola, Emilio A.</creatorcontrib><creatorcontrib>Soares, João S.</creatorcontrib><creatorcontrib>Li, David S.</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Merchant, Samer</creatorcontrib><creatorcontrib>Hsu, Edward W.</creatorcontrib><creatorcontrib>Vanderslice, Peter</creatorcontrib><creatorcontrib>Dixon, Richard A. F.</creatorcontrib><creatorcontrib>Sacks, Michael S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avazmohammadi, Reza</au><au>Mendiola, Emilio A.</au><au>Soares, João S.</au><au>Li, David S.</au><au>Chen, Zhiqiang</au><au>Merchant, Samer</au><au>Hsu, Edward W.</au><au>Vanderslice, Peter</au><au>Dixon, Richard A. F.</au><au>Sacks, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Cardiac Model for the Adaptation to Pulmonary Arterial Hypertension in the Rat</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>47</volume><issue>1</issue><spage>138</spage><epage>153</epage><pages>138-153</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Pulmonary arterial hypertension (PAH) imposes pressure overload on the right ventricle (RV), leading to RV enlargement
via
the growth of cardiac myocytes and remodeling of the collagen fiber architecture. The effects of these alterations on the functional behavior of the right ventricular free wall (RVFW) and organ-level cardiac function remain largely unexplored. Computational heart models in the rat (RHMs) of the normal and hypertensive states can be quite valuable in simulating the effects of PAH on cardiac function to gain insights into the pathophysiology of underlying myocardium remodeling. We thus developed high-fidelity biventricular finite element RHMs for the normal and post-PAH hypertensive states using extensive experimental data collected from rat hearts. We then applied the RHM to investigate the transmural nature of RVFW remodeling and its connection to wall stress elevation under PAH. We found a strong correlation between the longitudinally-dominated fiber-level adaptation of the RVFW and the transmural alterations of relevant wall stress components. We further conducted several numerical experiments to gain new insights on how the RV responds both normally and in the post-PAH state. We found that the effect of pressure overload alone on the increased contractility of the RV is comparable to the effects of changes in the RV geometry and stiffness. Furthermore, our RHMs provided fresh perspectives on long-standing questions of the functional role of the interventricular septum in RV function. Specifically, we demonstrated that an inaccurate identification of the mechanical adaptation of the septum can lead to a significant underestimation of RVFW contractility in the post-PAH state. These findings show how integrated experimental–computational models can facilitate a more comprehensive understanding of the cardiac remodeling events during PAH.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30264263</pmid><doi>10.1007/s10439-018-02130-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3199-2204</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2019-01, Vol.47 (1), p.138-153 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6318016 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Adaptation Animal models Animals Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Blood pressure Cardiac function Cardiomyocytes Classical Mechanics Collagen Computation Computer applications Computer Simulation Disease Models, Animal Enlargement Finite element method Heart Hypertension Hypertension, Pulmonary - pathology Hypertension, Pulmonary - physiopathology Male Mathematical models Models, Cardiovascular Muscle contraction Myocardium Myocytes Pressure effects Pulmonary hypertension Rats Rats, Inbred F344 Septum Stiffness Ventricle Ventricular Function, Right Ventricular Remodeling |
title | A Computational Cardiac Model for the Adaptation to Pulmonary Arterial Hypertension in the Rat |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Cardiac%20Model%20for%20the%20Adaptation%20to%20Pulmonary%20Arterial%20Hypertension%20in%20the%20Rat&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Avazmohammadi,%20Reza&rft.date=2019-01-01&rft.volume=47&rft.issue=1&rft.spage=138&rft.epage=153&rft.pages=138-153&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-018-02130-y&rft_dat=%3Cproquest_pubme%3E2112953000%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-8cef5aadba8d3807d25302fe854018c7b0a8d6a421c5b05b4674678bf888305f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2112953000&rft_id=info:pmid/30264263&rfr_iscdi=true |