Loading…

IGF1 Treatment Improves Cardiac Remodeling after Infarction by Targeting Myeloid Cells

Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we d...

Full description

Saved in:
Bibliographic Details
Published in:Molecular therapy 2019-01, Vol.27 (1), p.46-58
Main Authors: Heinen, Andre, Nederlof, Rianne, Panjwani, Priyadarshini, Spychala, André, Tschaidse, Tengis, Reffelt, Heiko, Boy, Johannes, Raupach, Annika, Gödecke, Stefanie, Petzsch, Patrick, Köhrer, Karl, Grandoch, Maria, Petz, Anne, Fischer, Jens W., Alter, Christina, Vasilevska, Jelena, Lang, Philipp, Gödecke, Axel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-6c1442cad77c8cc6b4c6d64e48d51faffa3434d31e9e5096fca1ee553f192ab03
cites cdi_FETCH-LOGICAL-c487t-6c1442cad77c8cc6b4c6d64e48d51faffa3434d31e9e5096fca1ee553f192ab03
container_end_page 58
container_issue 1
container_start_page 46
container_title Molecular therapy
container_volume 27
creator Heinen, Andre
Nederlof, Rianne
Panjwani, Priyadarshini
Spychala, André
Tschaidse, Tengis
Reffelt, Heiko
Boy, Johannes
Raupach, Annika
Gödecke, Stefanie
Petzsch, Patrick
Köhrer, Karl
Grandoch, Maria
Petz, Anne
Fischer, Jens W.
Alter, Christina
Vasilevska, Jelena
Lang, Philipp
Gödecke, Axel
description Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r−/− mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R. Heinen et. al. demonstrate that insulin-like growth factor 1 (IGF1) reduces scar size and improves cardiac function after myocardial infarction. This protective effect is independent of IGF1 signaling in cardiac myocytes but involves IGF1-dependent modulation of myeloid cells and enhanced accumulation of anti-inflammatory macrophages in the infarcted heart.
doi_str_mv 10.1016/j.ymthe.2018.10.020
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6319026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001618305276</els_id><sourcerecordid>2155166836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-6c1442cad77c8cc6b4c6d64e48d51faffa3434d31e9e5096fca1ee553f192ab03</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxS1ERUvhEyAhS1y4JPh_dg8gVREtkVpVqgJXy7HHqaPddbCdSPn2eJsSAQdOHs28efbzD6F3lEwpoerTZnroyyNMGaFN7UwJIy_QBZVMTghh4uWppuocvc55UysqW_UKnXMiWUMaeYF-LG6uKV4mMKWHoeBFv01xDxnPTXLBWPwAfXTQhWGNjS-Q8GLwJtkS4oBXB7w0aQ1lnN4doIvB4Tl0XX6DzrzpMrx9Pi_R9-uvy_m3ye39zWJ-dTuxopmVibJUCGaNm81sY61aCaucEiAaJ6k33hsuuHCcQguStMpbQwGk5J62zKwIv0Rfjr7b3aoHZ2uEZDq9TaE36aCjCfrvyRAe9TruteK0JUxVg4_PBin-3EEuug_Z1ghmgLjLmlEpqVINH6Uf_pFu4i4NNZ5mjDLVkubJkB9VNsWcE_jTYyjRIze90U_c9MhtbFZudev9nzlOO79BVcHnowDqb-4DJJ1tgMGCCwls0S6G_17wC6anqyc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212690826</pqid></control><display><type>article</type><title>IGF1 Treatment Improves Cardiac Remodeling after Infarction by Targeting Myeloid Cells</title><source>NCBI_PubMed Central(免费)</source><creator>Heinen, Andre ; Nederlof, Rianne ; Panjwani, Priyadarshini ; Spychala, André ; Tschaidse, Tengis ; Reffelt, Heiko ; Boy, Johannes ; Raupach, Annika ; Gödecke, Stefanie ; Petzsch, Patrick ; Köhrer, Karl ; Grandoch, Maria ; Petz, Anne ; Fischer, Jens W. ; Alter, Christina ; Vasilevska, Jelena ; Lang, Philipp ; Gödecke, Axel</creator><creatorcontrib>Heinen, Andre ; Nederlof, Rianne ; Panjwani, Priyadarshini ; Spychala, André ; Tschaidse, Tengis ; Reffelt, Heiko ; Boy, Johannes ; Raupach, Annika ; Gödecke, Stefanie ; Petzsch, Patrick ; Köhrer, Karl ; Grandoch, Maria ; Petz, Anne ; Fischer, Jens W. ; Alter, Christina ; Vasilevska, Jelena ; Lang, Philipp ; Gödecke, Axel</creatorcontrib><description>Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r−/− mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R. Heinen et. al. demonstrate that insulin-like growth factor 1 (IGF1) reduces scar size and improves cardiac function after myocardial infarction. This protective effect is independent of IGF1 signaling in cardiac myocytes but involves IGF1-dependent modulation of myeloid cells and enhanced accumulation of anti-inflammatory macrophages in the infarcted heart.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2018.10.020</identifier><identifier>PMID: 30528085</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apoptosis ; Bone marrow ; Cardiac function ; cardiac remodeling ; Cardiomyocytes ; Cardiovascular disease ; Cell cycle ; Chemokines ; Coronary vessels ; Cytokines ; Echocardiography ; Flow Cytometry ; Gene expression ; Heart ; Heart attacks ; Inflammation ; Insulin ; insulin-like growth factor 1 ; Insulin-like growth factor I ; Insulin-Like Growth Factor I - therapeutic use ; Ischemia ; macrophage polarization ; Macrophages ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myeloid cells ; Myeloid Cells - drug effects ; Myocardial infarction ; Myocardial Infarction - drug therapy ; Neutrophils ; Original ; Phenotypes ; Real-Time Polymerase Chain Reaction ; Receptor, IGF Type 1 - genetics ; Receptor, IGF Type 1 - metabolism ; Software ; Statistical analysis ; Veins &amp; arteries</subject><ispartof>Molecular therapy, 2019-01, Vol.27 (1), p.46-58</ispartof><rights>2018 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2018. The American Society of Gene and Cell Therapy</rights><rights>2018 The American Society of Gene and Cell Therapy. 2018 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-6c1442cad77c8cc6b4c6d64e48d51faffa3434d31e9e5096fca1ee553f192ab03</citedby><cites>FETCH-LOGICAL-c487t-6c1442cad77c8cc6b4c6d64e48d51faffa3434d31e9e5096fca1ee553f192ab03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319026/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319026/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30528085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinen, Andre</creatorcontrib><creatorcontrib>Nederlof, Rianne</creatorcontrib><creatorcontrib>Panjwani, Priyadarshini</creatorcontrib><creatorcontrib>Spychala, André</creatorcontrib><creatorcontrib>Tschaidse, Tengis</creatorcontrib><creatorcontrib>Reffelt, Heiko</creatorcontrib><creatorcontrib>Boy, Johannes</creatorcontrib><creatorcontrib>Raupach, Annika</creatorcontrib><creatorcontrib>Gödecke, Stefanie</creatorcontrib><creatorcontrib>Petzsch, Patrick</creatorcontrib><creatorcontrib>Köhrer, Karl</creatorcontrib><creatorcontrib>Grandoch, Maria</creatorcontrib><creatorcontrib>Petz, Anne</creatorcontrib><creatorcontrib>Fischer, Jens W.</creatorcontrib><creatorcontrib>Alter, Christina</creatorcontrib><creatorcontrib>Vasilevska, Jelena</creatorcontrib><creatorcontrib>Lang, Philipp</creatorcontrib><creatorcontrib>Gödecke, Axel</creatorcontrib><title>IGF1 Treatment Improves Cardiac Remodeling after Infarction by Targeting Myeloid Cells</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r−/− mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R. Heinen et. al. demonstrate that insulin-like growth factor 1 (IGF1) reduces scar size and improves cardiac function after myocardial infarction. This protective effect is independent of IGF1 signaling in cardiac myocytes but involves IGF1-dependent modulation of myeloid cells and enhanced accumulation of anti-inflammatory macrophages in the infarcted heart.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Bone marrow</subject><subject>Cardiac function</subject><subject>cardiac remodeling</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular disease</subject><subject>Cell cycle</subject><subject>Chemokines</subject><subject>Coronary vessels</subject><subject>Cytokines</subject><subject>Echocardiography</subject><subject>Flow Cytometry</subject><subject>Gene expression</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>insulin-like growth factor 1</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-Like Growth Factor I - therapeutic use</subject><subject>Ischemia</subject><subject>macrophage polarization</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Myeloid cells</subject><subject>Myeloid Cells - drug effects</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - drug therapy</subject><subject>Neutrophils</subject><subject>Original</subject><subject>Phenotypes</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Receptor, IGF Type 1 - genetics</subject><subject>Receptor, IGF Type 1 - metabolism</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Veins &amp; arteries</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vEzEQxS1ERUvhEyAhS1y4JPh_dg8gVREtkVpVqgJXy7HHqaPddbCdSPn2eJsSAQdOHs28efbzD6F3lEwpoerTZnroyyNMGaFN7UwJIy_QBZVMTghh4uWppuocvc55UysqW_UKnXMiWUMaeYF-LG6uKV4mMKWHoeBFv01xDxnPTXLBWPwAfXTQhWGNjS-Q8GLwJtkS4oBXB7w0aQ1lnN4doIvB4Tl0XX6DzrzpMrx9Pi_R9-uvy_m3ye39zWJ-dTuxopmVibJUCGaNm81sY61aCaucEiAaJ6k33hsuuHCcQguStMpbQwGk5J62zKwIv0Rfjr7b3aoHZ2uEZDq9TaE36aCjCfrvyRAe9TruteK0JUxVg4_PBin-3EEuug_Z1ghmgLjLmlEpqVINH6Uf_pFu4i4NNZ5mjDLVkubJkB9VNsWcE_jTYyjRIze90U_c9MhtbFZudev9nzlOO79BVcHnowDqb-4DJJ1tgMGCCwls0S6G_17wC6anqyc</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Heinen, Andre</creator><creator>Nederlof, Rianne</creator><creator>Panjwani, Priyadarshini</creator><creator>Spychala, André</creator><creator>Tschaidse, Tengis</creator><creator>Reffelt, Heiko</creator><creator>Boy, Johannes</creator><creator>Raupach, Annika</creator><creator>Gödecke, Stefanie</creator><creator>Petzsch, Patrick</creator><creator>Köhrer, Karl</creator><creator>Grandoch, Maria</creator><creator>Petz, Anne</creator><creator>Fischer, Jens W.</creator><creator>Alter, Christina</creator><creator>Vasilevska, Jelena</creator><creator>Lang, Philipp</creator><creator>Gödecke, Axel</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene &amp; Cell Therapy</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190102</creationdate><title>IGF1 Treatment Improves Cardiac Remodeling after Infarction by Targeting Myeloid Cells</title><author>Heinen, Andre ; Nederlof, Rianne ; Panjwani, Priyadarshini ; Spychala, André ; Tschaidse, Tengis ; Reffelt, Heiko ; Boy, Johannes ; Raupach, Annika ; Gödecke, Stefanie ; Petzsch, Patrick ; Köhrer, Karl ; Grandoch, Maria ; Petz, Anne ; Fischer, Jens W. ; Alter, Christina ; Vasilevska, Jelena ; Lang, Philipp ; Gödecke, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-6c1442cad77c8cc6b4c6d64e48d51faffa3434d31e9e5096fca1ee553f192ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Bone marrow</topic><topic>Cardiac function</topic><topic>cardiac remodeling</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular disease</topic><topic>Cell cycle</topic><topic>Chemokines</topic><topic>Coronary vessels</topic><topic>Cytokines</topic><topic>Echocardiography</topic><topic>Flow Cytometry</topic><topic>Gene expression</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>insulin-like growth factor 1</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-Like Growth Factor I - therapeutic use</topic><topic>Ischemia</topic><topic>macrophage polarization</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Myeloid cells</topic><topic>Myeloid Cells - drug effects</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - drug therapy</topic><topic>Neutrophils</topic><topic>Original</topic><topic>Phenotypes</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Receptor, IGF Type 1 - genetics</topic><topic>Receptor, IGF Type 1 - metabolism</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinen, Andre</creatorcontrib><creatorcontrib>Nederlof, Rianne</creatorcontrib><creatorcontrib>Panjwani, Priyadarshini</creatorcontrib><creatorcontrib>Spychala, André</creatorcontrib><creatorcontrib>Tschaidse, Tengis</creatorcontrib><creatorcontrib>Reffelt, Heiko</creatorcontrib><creatorcontrib>Boy, Johannes</creatorcontrib><creatorcontrib>Raupach, Annika</creatorcontrib><creatorcontrib>Gödecke, Stefanie</creatorcontrib><creatorcontrib>Petzsch, Patrick</creatorcontrib><creatorcontrib>Köhrer, Karl</creatorcontrib><creatorcontrib>Grandoch, Maria</creatorcontrib><creatorcontrib>Petz, Anne</creatorcontrib><creatorcontrib>Fischer, Jens W.</creatorcontrib><creatorcontrib>Alter, Christina</creatorcontrib><creatorcontrib>Vasilevska, Jelena</creatorcontrib><creatorcontrib>Lang, Philipp</creatorcontrib><creatorcontrib>Gödecke, Axel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinen, Andre</au><au>Nederlof, Rianne</au><au>Panjwani, Priyadarshini</au><au>Spychala, André</au><au>Tschaidse, Tengis</au><au>Reffelt, Heiko</au><au>Boy, Johannes</au><au>Raupach, Annika</au><au>Gödecke, Stefanie</au><au>Petzsch, Patrick</au><au>Köhrer, Karl</au><au>Grandoch, Maria</au><au>Petz, Anne</au><au>Fischer, Jens W.</au><au>Alter, Christina</au><au>Vasilevska, Jelena</au><au>Lang, Philipp</au><au>Gödecke, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IGF1 Treatment Improves Cardiac Remodeling after Infarction by Targeting Myeloid Cells</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2019-01-02</date><risdate>2019</risdate><volume>27</volume><issue>1</issue><spage>46</spage><epage>58</epage><pages>46-58</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r−/− mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R. Heinen et. al. demonstrate that insulin-like growth factor 1 (IGF1) reduces scar size and improves cardiac function after myocardial infarction. This protective effect is independent of IGF1 signaling in cardiac myocytes but involves IGF1-dependent modulation of myeloid cells and enhanced accumulation of anti-inflammatory macrophages in the infarcted heart.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30528085</pmid><doi>10.1016/j.ymthe.2018.10.020</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2019-01, Vol.27 (1), p.46-58
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6319026
source NCBI_PubMed Central(免费)
subjects Animals
Apoptosis
Bone marrow
Cardiac function
cardiac remodeling
Cardiomyocytes
Cardiovascular disease
Cell cycle
Chemokines
Coronary vessels
Cytokines
Echocardiography
Flow Cytometry
Gene expression
Heart
Heart attacks
Inflammation
Insulin
insulin-like growth factor 1
Insulin-like growth factor I
Insulin-Like Growth Factor I - therapeutic use
Ischemia
macrophage polarization
Macrophages
Mice
Mice, Inbred C57BL
Mice, Knockout
Myeloid cells
Myeloid Cells - drug effects
Myocardial infarction
Myocardial Infarction - drug therapy
Neutrophils
Original
Phenotypes
Real-Time Polymerase Chain Reaction
Receptor, IGF Type 1 - genetics
Receptor, IGF Type 1 - metabolism
Software
Statistical analysis
Veins & arteries
title IGF1 Treatment Improves Cardiac Remodeling after Infarction by Targeting Myeloid Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IGF1%20Treatment%20Improves%20Cardiac%20Remodeling%20after%20Infarction%20by%20Targeting%20Myeloid%20Cells&rft.jtitle=Molecular%20therapy&rft.au=Heinen,%20Andre&rft.date=2019-01-02&rft.volume=27&rft.issue=1&rft.spage=46&rft.epage=58&rft.pages=46-58&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2018.10.020&rft_dat=%3Cproquest_pubme%3E2155166836%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-6c1442cad77c8cc6b4c6d64e48d51faffa3434d31e9e5096fca1ee553f192ab03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212690826&rft_id=info:pmid/30528085&rfr_iscdi=true