Loading…

Combining relation extraction with function detection for BEL statement extraction

Abstract The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermed...

Full description

Saved in:
Bibliographic Details
Published in:Database : the journal of biological databases and curation 2019-01, Vol.2019
Main Authors: Liu, Suwen, Cheng, Wei, Qian, Longhua, Zhou, Guodong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3
cites cdi_FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3
container_end_page
container_issue
container_start_page
container_title Database : the journal of biological databases and curation
container_volume 2019
creator Liu, Suwen
Cheng, Wei
Qian, Longhua
Zhou, Guodong
description Abstract The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively.
doi_str_mv 10.1093/database/bay133
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6323300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/database/bay133</oup_id><sourcerecordid>2165660352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3</originalsourceid><addsrcrecordid>eNqFkd1LwzAUxYMoTqfPvknBFxHm8t32RdAxP2AgiD6HtE23jLaZSaruvzez25i--JSTm9893JsDwBmC1wimZFhILzPp1DCTS0TIHjhCMUsGkHKyv6N74Ni5OYQ8ThJ6CHoEckw5TY_Ay8jUmW50M42sqqTXponUl7cy_5Gf2s-ism26W6G86lRpbHQ3nkTOS69q1fidphNwUMrKqdP12Qdv9-PX0eNg8vzwNLqdDHLKuB_kEErFeJokLC2KAiNEaBYzGcs0V2UoKcolxxBRSsoMY1qQOI9ZwWMIsSpy0gc3ne-izepQCFNYWYmF1bW0S2GkFr9fGj0TU_MhOMGEQBgMLtcG1ry3ynlRa5erqpKNMq0TGHHGOSQMB_TiDzo3rW3CegKvPpNBnMSBGnZUbo1zVpXbYRAUq7zEJi_R5RU6znd32PKbgAJw1QGmXfzr9g34WKPi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306250287</pqid></control><display><type>article</type><title>Combining relation extraction with function detection for BEL statement extraction</title><source>Oxford University Press Open Access</source><source>PubMed Central</source><creator>Liu, Suwen ; Cheng, Wei ; Qian, Longhua ; Zhou, Guodong</creator><creatorcontrib>Liu, Suwen ; Cheng, Wei ; Qian, Longhua ; Zhou, Guodong</creatorcontrib><description>Abstract The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively.</description><identifier>ISSN: 1758-0463</identifier><identifier>EISSN: 1758-0463</identifier><identifier>DOI: 10.1093/database/bay133</identifier><identifier>PMID: 30624649</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology - methods ; Data Mining - methods ; Databases, Factual ; Deep Learning ; Humans ; Long short-term memory ; Natural Language Processing ; Original ; Software</subject><ispartof>Database : the journal of biological databases and curation, 2019-01, Vol.2019</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3</citedby><cites>FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323300/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323300/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30624649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Suwen</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Qian, Longhua</creatorcontrib><creatorcontrib>Zhou, Guodong</creatorcontrib><title>Combining relation extraction with function detection for BEL statement extraction</title><title>Database : the journal of biological databases and curation</title><addtitle>Database (Oxford)</addtitle><description>Abstract The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively.</description><subject>Computational Biology - methods</subject><subject>Data Mining - methods</subject><subject>Databases, Factual</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Long short-term memory</subject><subject>Natural Language Processing</subject><subject>Original</subject><subject>Software</subject><issn>1758-0463</issn><issn>1758-0463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkd1LwzAUxYMoTqfPvknBFxHm8t32RdAxP2AgiD6HtE23jLaZSaruvzez25i--JSTm9893JsDwBmC1wimZFhILzPp1DCTS0TIHjhCMUsGkHKyv6N74Ni5OYQ8ThJ6CHoEckw5TY_Ay8jUmW50M42sqqTXponUl7cy_5Gf2s-ism26W6G86lRpbHQ3nkTOS69q1fidphNwUMrKqdP12Qdv9-PX0eNg8vzwNLqdDHLKuB_kEErFeJokLC2KAiNEaBYzGcs0V2UoKcolxxBRSsoMY1qQOI9ZwWMIsSpy0gc3ne-izepQCFNYWYmF1bW0S2GkFr9fGj0TU_MhOMGEQBgMLtcG1ry3ynlRa5erqpKNMq0TGHHGOSQMB_TiDzo3rW3CegKvPpNBnMSBGnZUbo1zVpXbYRAUq7zEJi_R5RU6znd32PKbgAJw1QGmXfzr9g34WKPi</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Liu, Suwen</creator><creator>Cheng, Wei</creator><creator>Qian, Longhua</creator><creator>Zhou, Guodong</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Combining relation extraction with function detection for BEL statement extraction</title><author>Liu, Suwen ; Cheng, Wei ; Qian, Longhua ; Zhou, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational Biology - methods</topic><topic>Data Mining - methods</topic><topic>Databases, Factual</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Long short-term memory</topic><topic>Natural Language Processing</topic><topic>Original</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Suwen</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Qian, Longhua</creatorcontrib><creatorcontrib>Zhou, Guodong</creatorcontrib><collection>Oxford University Press Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Database : the journal of biological databases and curation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Suwen</au><au>Cheng, Wei</au><au>Qian, Longhua</au><au>Zhou, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining relation extraction with function detection for BEL statement extraction</atitle><jtitle>Database : the journal of biological databases and curation</jtitle><addtitle>Database (Oxford)</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issn>1758-0463</issn><eissn>1758-0463</eissn><abstract>Abstract The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30624649</pmid><doi>10.1093/database/bay133</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-0463
ispartof Database : the journal of biological databases and curation, 2019-01, Vol.2019
issn 1758-0463
1758-0463
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6323300
source Oxford University Press Open Access; PubMed Central
subjects Computational Biology - methods
Data Mining - methods
Databases, Factual
Deep Learning
Humans
Long short-term memory
Natural Language Processing
Original
Software
title Combining relation extraction with function detection for BEL statement extraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20relation%20extraction%20with%20function%20detection%20for%20BEL%20statement%20extraction&rft.jtitle=Database%20:%20the%20journal%20of%20biological%20databases%20and%20curation&rft.au=Liu,%20Suwen&rft.date=2019-01-01&rft.volume=2019&rft.issn=1758-0463&rft.eissn=1758-0463&rft_id=info:doi/10.1093/database/bay133&rft_dat=%3Cproquest_pubme%3E2165660352%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306250287&rft_id=info:pmid/30624649&rft_oup_id=10.1093/database/bay133&rfr_iscdi=true