Loading…
Combining relation extraction with function detection for BEL statement extraction
Abstract The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermed...
Saved in:
Published in: | Database : the journal of biological databases and curation 2019-01, Vol.2019 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Database : the journal of biological databases and curation |
container_volume | 2019 |
creator | Liu, Suwen Cheng, Wei Qian, Longhua Zhou, Guodong |
description | Abstract
The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively. |
doi_str_mv | 10.1093/database/bay133 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6323300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/database/bay133</oup_id><sourcerecordid>2165660352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3</originalsourceid><addsrcrecordid>eNqFkd1LwzAUxYMoTqfPvknBFxHm8t32RdAxP2AgiD6HtE23jLaZSaruvzez25i--JSTm9893JsDwBmC1wimZFhILzPp1DCTS0TIHjhCMUsGkHKyv6N74Ni5OYQ8ThJ6CHoEckw5TY_Ay8jUmW50M42sqqTXponUl7cy_5Gf2s-ism26W6G86lRpbHQ3nkTOS69q1fidphNwUMrKqdP12Qdv9-PX0eNg8vzwNLqdDHLKuB_kEErFeJokLC2KAiNEaBYzGcs0V2UoKcolxxBRSsoMY1qQOI9ZwWMIsSpy0gc3ne-izepQCFNYWYmF1bW0S2GkFr9fGj0TU_MhOMGEQBgMLtcG1ry3ynlRa5erqpKNMq0TGHHGOSQMB_TiDzo3rW3CegKvPpNBnMSBGnZUbo1zVpXbYRAUq7zEJi_R5RU6znd32PKbgAJw1QGmXfzr9g34WKPi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306250287</pqid></control><display><type>article</type><title>Combining relation extraction with function detection for BEL statement extraction</title><source>Oxford University Press Open Access</source><source>PubMed Central</source><creator>Liu, Suwen ; Cheng, Wei ; Qian, Longhua ; Zhou, Guodong</creator><creatorcontrib>Liu, Suwen ; Cheng, Wei ; Qian, Longhua ; Zhou, Guodong</creatorcontrib><description>Abstract
The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively.</description><identifier>ISSN: 1758-0463</identifier><identifier>EISSN: 1758-0463</identifier><identifier>DOI: 10.1093/database/bay133</identifier><identifier>PMID: 30624649</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology - methods ; Data Mining - methods ; Databases, Factual ; Deep Learning ; Humans ; Long short-term memory ; Natural Language Processing ; Original ; Software</subject><ispartof>Database : the journal of biological databases and curation, 2019-01, Vol.2019</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3</citedby><cites>FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323300/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323300/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30624649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Suwen</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Qian, Longhua</creatorcontrib><creatorcontrib>Zhou, Guodong</creatorcontrib><title>Combining relation extraction with function detection for BEL statement extraction</title><title>Database : the journal of biological databases and curation</title><addtitle>Database (Oxford)</addtitle><description>Abstract
The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively.</description><subject>Computational Biology - methods</subject><subject>Data Mining - methods</subject><subject>Databases, Factual</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Long short-term memory</subject><subject>Natural Language Processing</subject><subject>Original</subject><subject>Software</subject><issn>1758-0463</issn><issn>1758-0463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkd1LwzAUxYMoTqfPvknBFxHm8t32RdAxP2AgiD6HtE23jLaZSaruvzez25i--JSTm9893JsDwBmC1wimZFhILzPp1DCTS0TIHjhCMUsGkHKyv6N74Ni5OYQ8ThJ6CHoEckw5TY_Ay8jUmW50M42sqqTXponUl7cy_5Gf2s-ism26W6G86lRpbHQ3nkTOS69q1fidphNwUMrKqdP12Qdv9-PX0eNg8vzwNLqdDHLKuB_kEErFeJokLC2KAiNEaBYzGcs0V2UoKcolxxBRSsoMY1qQOI9ZwWMIsSpy0gc3ne-izepQCFNYWYmF1bW0S2GkFr9fGj0TU_MhOMGEQBgMLtcG1ry3ynlRa5erqpKNMq0TGHHGOSQMB_TiDzo3rW3CegKvPpNBnMSBGnZUbo1zVpXbYRAUq7zEJi_R5RU6znd32PKbgAJw1QGmXfzr9g34WKPi</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Liu, Suwen</creator><creator>Cheng, Wei</creator><creator>Qian, Longhua</creator><creator>Zhou, Guodong</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Combining relation extraction with function detection for BEL statement extraction</title><author>Liu, Suwen ; Cheng, Wei ; Qian, Longhua ; Zhou, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational Biology - methods</topic><topic>Data Mining - methods</topic><topic>Databases, Factual</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Long short-term memory</topic><topic>Natural Language Processing</topic><topic>Original</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Suwen</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Qian, Longhua</creatorcontrib><creatorcontrib>Zhou, Guodong</creatorcontrib><collection>Oxford University Press Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Database : the journal of biological databases and curation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Suwen</au><au>Cheng, Wei</au><au>Qian, Longhua</au><au>Zhou, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining relation extraction with function detection for BEL statement extraction</atitle><jtitle>Database : the journal of biological databases and curation</jtitle><addtitle>Database (Oxford)</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issn>1758-0463</issn><eissn>1758-0463</eissn><abstract>Abstract
The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30624649</pmid><doi>10.1093/database/bay133</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-0463 |
ispartof | Database : the journal of biological databases and curation, 2019-01, Vol.2019 |
issn | 1758-0463 1758-0463 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6323300 |
source | Oxford University Press Open Access; PubMed Central |
subjects | Computational Biology - methods Data Mining - methods Databases, Factual Deep Learning Humans Long short-term memory Natural Language Processing Original Software |
title | Combining relation extraction with function detection for BEL statement extraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20relation%20extraction%20with%20function%20detection%20for%20BEL%20statement%20extraction&rft.jtitle=Database%20:%20the%20journal%20of%20biological%20databases%20and%20curation&rft.au=Liu,%20Suwen&rft.date=2019-01-01&rft.volume=2019&rft.issn=1758-0463&rft.eissn=1758-0463&rft_id=info:doi/10.1093/database/bay133&rft_dat=%3Cproquest_pubme%3E2165660352%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-c00ae5698859ddd21134b75a7a9cef9dde46a6201443fb224d37c75d67002edc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306250287&rft_id=info:pmid/30624649&rft_oup_id=10.1093/database/bay133&rfr_iscdi=true |