Loading…

Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells

Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structural...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2019-01, Vol.179 (1), p.156-167
Main Authors: Sommer, Manuel, Sutter, Markus, Gupta, Sayan, Kirst, Henning, Turmo, Aiko, Lechno-Yossef, Sigal, Burton, Rodney L., Saechao, Christine, Sloan, Nancy B., Cheng, Xiaolin, Chan, Leanne-Jade G., Petzold, Christopher J., Fuentes-Cabrera, Miguel, Ralston, Corie Y., Kerfeld, Cheryl A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3
cites
container_end_page 167
container_issue 1
container_start_page 156
container_title Plant physiology (Bethesda)
container_volume 179
creator Sommer, Manuel
Sutter, Markus
Gupta, Sayan
Kirst, Henning
Turmo, Aiko
Lechno-Yossef, Sigal
Burton, Rodney L.
Saechao, Christine
Sloan, Nancy B.
Cheng, Xiaolin
Chan, Leanne-Jade G.
Petzold, Christopher J.
Fuentes-Cabrera, Miguel
Ralston, Corie Y.
Kerfeld, Cheryl A.
description Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of β-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because β-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.
doi_str_mv 10.1104/pp.18.01190
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6324227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26568695</jstor_id><sourcerecordid>26568695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EotvCiTPI4lrtMv6IY1-QSkRpRSUOwImD5ThjkiqJI9ug3f-e0IUVnOZJ76c3TzOEvGCwYwzkm2XZMb0Dxgw8IhtWCb7lldSPyQZg1aC1OSPnOd8DABNMPiVnAoQ2tRYb8u0GC6bY495NmDK9jmnCjrYH2vjpo6Bu7h6UpLezT-gy0tIjbeK0jLgfyoHGQN9hcbRxqY37Q44T0s89jmN-Rp4EN2Z8_mdekK_X7780N9u7Tx9um6u7rZdGlW0tQu2AKaVEJ1ujoA6hBaMdDwGDN53RvOvAGC-YM5Ws6toEdKZlAXmtUVyQt8fc5Ue7lvc4l-RGu6Rhculgoxvs_8489PZ7_GmV4JLzeg14fQyIuQw2-6Gg732cZ_TFMqmhqswKXR4hn2LOCcNpAQP7-xF2WSzT9uERK_3q304n9u_lV-DlEbjPJaaTz1WltDKV-AUt7Y4B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells</title><source>Oxford Journals Online</source><creator>Sommer, Manuel ; Sutter, Markus ; Gupta, Sayan ; Kirst, Henning ; Turmo, Aiko ; Lechno-Yossef, Sigal ; Burton, Rodney L. ; Saechao, Christine ; Sloan, Nancy B. ; Cheng, Xiaolin ; Chan, Leanne-Jade G. ; Petzold, Christopher J. ; Fuentes-Cabrera, Miguel ; Ralston, Corie Y. ; Kerfeld, Cheryl A.</creator><creatorcontrib>Sommer, Manuel ; Sutter, Markus ; Gupta, Sayan ; Kirst, Henning ; Turmo, Aiko ; Lechno-Yossef, Sigal ; Burton, Rodney L. ; Saechao, Christine ; Sloan, Nancy B. ; Cheng, Xiaolin ; Chan, Leanne-Jade G. ; Petzold, Christopher J. ; Fuentes-Cabrera, Miguel ; Ralston, Corie Y. ; Kerfeld, Cheryl A. ; Michigan State Univ., East Lansing, MI (United States). MSU-DOE Plant Research Laboratory ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of β-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because β-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.01190</identifier><identifier>PMID: 30389783</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>bacterial microcompartment ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Proteins - physiology ; BASIC BIOLOGICAL SCIENCES ; cyanobacteria ; Gene Deletion ; heterohexamer ; Models, Molecular ; Molecular Dynamics Simulation ; Permeability ; satellite locus ; Synechococcus - genetics ; Synechococcus - metabolism ; β-carboxysome</subject><ispartof>Plant physiology (Bethesda), 2019-01, Vol.179 (1), p.156-167</ispartof><rights>2019 American Society of Plant Biologists</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3</citedby><orcidid>0000-0002-4719-0580 ; 0000-0002-9977-8482 ; 0000-0002-4210-2254 ; 0000-0001-9231-3386 ; 0000-0001-6290-4820 ; 0000-0002-7899-0951 ; 0000-0002-8270-5228 ; 0000000192313386 ; 0000000242102254 ; 0000000282705228 ; 0000000278990951 ; 0000000299778482 ; 0000000162904820 ; 0000000247190580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30389783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1480559$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sommer, Manuel</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Gupta, Sayan</creatorcontrib><creatorcontrib>Kirst, Henning</creatorcontrib><creatorcontrib>Turmo, Aiko</creatorcontrib><creatorcontrib>Lechno-Yossef, Sigal</creatorcontrib><creatorcontrib>Burton, Rodney L.</creatorcontrib><creatorcontrib>Saechao, Christine</creatorcontrib><creatorcontrib>Sloan, Nancy B.</creatorcontrib><creatorcontrib>Cheng, Xiaolin</creatorcontrib><creatorcontrib>Chan, Leanne-Jade G.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Fuentes-Cabrera, Miguel</creatorcontrib><creatorcontrib>Ralston, Corie Y.</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States). MSU-DOE Plant Research Laboratory</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of β-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because β-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.</description><subject>bacterial microcompartment</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - physiology</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>cyanobacteria</subject><subject>Gene Deletion</subject><subject>heterohexamer</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Permeability</subject><subject>satellite locus</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><subject>β-carboxysome</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v1DAQxS0EotvCiTPI4lrtMv6IY1-QSkRpRSUOwImD5ThjkiqJI9ug3f-e0IUVnOZJ76c3TzOEvGCwYwzkm2XZMb0Dxgw8IhtWCb7lldSPyQZg1aC1OSPnOd8DABNMPiVnAoQ2tRYb8u0GC6bY495NmDK9jmnCjrYH2vjpo6Bu7h6UpLezT-gy0tIjbeK0jLgfyoHGQN9hcbRxqY37Q44T0s89jmN-Rp4EN2Z8_mdekK_X7780N9u7Tx9um6u7rZdGlW0tQu2AKaVEJ1ujoA6hBaMdDwGDN53RvOvAGC-YM5Ws6toEdKZlAXmtUVyQt8fc5Ue7lvc4l-RGu6Rhculgoxvs_8489PZ7_GmV4JLzeg14fQyIuQw2-6Gg732cZ_TFMqmhqswKXR4hn2LOCcNpAQP7-xF2WSzT9uERK_3q304n9u_lV-DlEbjPJaaTz1WltDKV-AUt7Y4B</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Sommer, Manuel</creator><creator>Sutter, Markus</creator><creator>Gupta, Sayan</creator><creator>Kirst, Henning</creator><creator>Turmo, Aiko</creator><creator>Lechno-Yossef, Sigal</creator><creator>Burton, Rodney L.</creator><creator>Saechao, Christine</creator><creator>Sloan, Nancy B.</creator><creator>Cheng, Xiaolin</creator><creator>Chan, Leanne-Jade G.</creator><creator>Petzold, Christopher J.</creator><creator>Fuentes-Cabrera, Miguel</creator><creator>Ralston, Corie Y.</creator><creator>Kerfeld, Cheryl A.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4719-0580</orcidid><orcidid>https://orcid.org/0000-0002-9977-8482</orcidid><orcidid>https://orcid.org/0000-0002-4210-2254</orcidid><orcidid>https://orcid.org/0000-0001-9231-3386</orcidid><orcidid>https://orcid.org/0000-0001-6290-4820</orcidid><orcidid>https://orcid.org/0000-0002-7899-0951</orcidid><orcidid>https://orcid.org/0000-0002-8270-5228</orcidid><orcidid>https://orcid.org/0000000192313386</orcidid><orcidid>https://orcid.org/0000000242102254</orcidid><orcidid>https://orcid.org/0000000282705228</orcidid><orcidid>https://orcid.org/0000000278990951</orcidid><orcidid>https://orcid.org/0000000299778482</orcidid><orcidid>https://orcid.org/0000000162904820</orcidid><orcidid>https://orcid.org/0000000247190580</orcidid></search><sort><creationdate>20190101</creationdate><title>Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells</title><author>Sommer, Manuel ; Sutter, Markus ; Gupta, Sayan ; Kirst, Henning ; Turmo, Aiko ; Lechno-Yossef, Sigal ; Burton, Rodney L. ; Saechao, Christine ; Sloan, Nancy B. ; Cheng, Xiaolin ; Chan, Leanne-Jade G. ; Petzold, Christopher J. ; Fuentes-Cabrera, Miguel ; Ralston, Corie Y. ; Kerfeld, Cheryl A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bacterial microcompartment</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - physiology</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>cyanobacteria</topic><topic>Gene Deletion</topic><topic>heterohexamer</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Permeability</topic><topic>satellite locus</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><topic>β-carboxysome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sommer, Manuel</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Gupta, Sayan</creatorcontrib><creatorcontrib>Kirst, Henning</creatorcontrib><creatorcontrib>Turmo, Aiko</creatorcontrib><creatorcontrib>Lechno-Yossef, Sigal</creatorcontrib><creatorcontrib>Burton, Rodney L.</creatorcontrib><creatorcontrib>Saechao, Christine</creatorcontrib><creatorcontrib>Sloan, Nancy B.</creatorcontrib><creatorcontrib>Cheng, Xiaolin</creatorcontrib><creatorcontrib>Chan, Leanne-Jade G.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Fuentes-Cabrera, Miguel</creatorcontrib><creatorcontrib>Ralston, Corie Y.</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States). MSU-DOE Plant Research Laboratory</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sommer, Manuel</au><au>Sutter, Markus</au><au>Gupta, Sayan</au><au>Kirst, Henning</au><au>Turmo, Aiko</au><au>Lechno-Yossef, Sigal</au><au>Burton, Rodney L.</au><au>Saechao, Christine</au><au>Sloan, Nancy B.</au><au>Cheng, Xiaolin</au><au>Chan, Leanne-Jade G.</au><au>Petzold, Christopher J.</au><au>Fuentes-Cabrera, Miguel</au><au>Ralston, Corie Y.</au><au>Kerfeld, Cheryl A.</au><aucorp>Michigan State Univ., East Lansing, MI (United States). MSU-DOE Plant Research Laboratory</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>179</volume><issue>1</issue><spage>156</spage><epage>167</epage><pages>156-167</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of β-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because β-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>30389783</pmid><doi>10.1104/pp.18.01190</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4719-0580</orcidid><orcidid>https://orcid.org/0000-0002-9977-8482</orcidid><orcidid>https://orcid.org/0000-0002-4210-2254</orcidid><orcidid>https://orcid.org/0000-0001-9231-3386</orcidid><orcidid>https://orcid.org/0000-0001-6290-4820</orcidid><orcidid>https://orcid.org/0000-0002-7899-0951</orcidid><orcidid>https://orcid.org/0000-0002-8270-5228</orcidid><orcidid>https://orcid.org/0000000192313386</orcidid><orcidid>https://orcid.org/0000000242102254</orcidid><orcidid>https://orcid.org/0000000282705228</orcidid><orcidid>https://orcid.org/0000000278990951</orcidid><orcidid>https://orcid.org/0000000299778482</orcidid><orcidid>https://orcid.org/0000000162904820</orcidid><orcidid>https://orcid.org/0000000247190580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2019-01, Vol.179 (1), p.156-167
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6324227
source Oxford Journals Online
subjects bacterial microcompartment
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Proteins - physiology
BASIC BIOLOGICAL SCIENCES
cyanobacteria
Gene Deletion
heterohexamer
Models, Molecular
Molecular Dynamics Simulation
Permeability
satellite locus
Synechococcus - genetics
Synechococcus - metabolism
β-carboxysome
title Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterohexamers%20Formed%20by%20CcmK3%20and%20CcmK4%20Increase%20the%20Complexity%20of%20Beta%20Carboxysome%20Shells&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Sommer,%20Manuel&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States).%20MSU-DOE%20Plant%20Research%20Laboratory&rft.date=2019-01-01&rft.volume=179&rft.issue=1&rft.spage=156&rft.epage=167&rft.pages=156-167&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.01190&rft_dat=%3Cjstor_pubme%3E26568695%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30389783&rft_jstor_id=26568695&rfr_iscdi=true