Loading…
Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells
Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structural...
Saved in:
Published in: | Plant physiology (Bethesda) 2019-01, Vol.179 (1), p.156-167 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3 |
---|---|
cites | |
container_end_page | 167 |
container_issue | 1 |
container_start_page | 156 |
container_title | Plant physiology (Bethesda) |
container_volume | 179 |
creator | Sommer, Manuel Sutter, Markus Gupta, Sayan Kirst, Henning Turmo, Aiko Lechno-Yossef, Sigal Burton, Rodney L. Saechao, Christine Sloan, Nancy B. Cheng, Xiaolin Chan, Leanne-Jade G. Petzold, Christopher J. Fuentes-Cabrera, Miguel Ralston, Corie Y. Kerfeld, Cheryl A. |
description | Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of β-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because β-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions. |
doi_str_mv | 10.1104/pp.18.01190 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6324227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26568695</jstor_id><sourcerecordid>26568695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EotvCiTPI4lrtMv6IY1-QSkRpRSUOwImD5ThjkiqJI9ug3f-e0IUVnOZJ76c3TzOEvGCwYwzkm2XZMb0Dxgw8IhtWCb7lldSPyQZg1aC1OSPnOd8DABNMPiVnAoQ2tRYb8u0GC6bY495NmDK9jmnCjrYH2vjpo6Bu7h6UpLezT-gy0tIjbeK0jLgfyoHGQN9hcbRxqY37Q44T0s89jmN-Rp4EN2Z8_mdekK_X7780N9u7Tx9um6u7rZdGlW0tQu2AKaVEJ1ujoA6hBaMdDwGDN53RvOvAGC-YM5Ws6toEdKZlAXmtUVyQt8fc5Ue7lvc4l-RGu6Rhculgoxvs_8489PZ7_GmV4JLzeg14fQyIuQw2-6Gg732cZ_TFMqmhqswKXR4hn2LOCcNpAQP7-xF2WSzT9uERK_3q304n9u_lV-DlEbjPJaaTz1WltDKV-AUt7Y4B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells</title><source>Oxford Journals Online</source><creator>Sommer, Manuel ; Sutter, Markus ; Gupta, Sayan ; Kirst, Henning ; Turmo, Aiko ; Lechno-Yossef, Sigal ; Burton, Rodney L. ; Saechao, Christine ; Sloan, Nancy B. ; Cheng, Xiaolin ; Chan, Leanne-Jade G. ; Petzold, Christopher J. ; Fuentes-Cabrera, Miguel ; Ralston, Corie Y. ; Kerfeld, Cheryl A.</creator><creatorcontrib>Sommer, Manuel ; Sutter, Markus ; Gupta, Sayan ; Kirst, Henning ; Turmo, Aiko ; Lechno-Yossef, Sigal ; Burton, Rodney L. ; Saechao, Christine ; Sloan, Nancy B. ; Cheng, Xiaolin ; Chan, Leanne-Jade G. ; Petzold, Christopher J. ; Fuentes-Cabrera, Miguel ; Ralston, Corie Y. ; Kerfeld, Cheryl A. ; Michigan State Univ., East Lansing, MI (United States). MSU-DOE Plant Research Laboratory ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of β-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because β-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.01190</identifier><identifier>PMID: 30389783</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>bacterial microcompartment ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Proteins - physiology ; BASIC BIOLOGICAL SCIENCES ; cyanobacteria ; Gene Deletion ; heterohexamer ; Models, Molecular ; Molecular Dynamics Simulation ; Permeability ; satellite locus ; Synechococcus - genetics ; Synechococcus - metabolism ; β-carboxysome</subject><ispartof>Plant physiology (Bethesda), 2019-01, Vol.179 (1), p.156-167</ispartof><rights>2019 American Society of Plant Biologists</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3</citedby><orcidid>0000-0002-4719-0580 ; 0000-0002-9977-8482 ; 0000-0002-4210-2254 ; 0000-0001-9231-3386 ; 0000-0001-6290-4820 ; 0000-0002-7899-0951 ; 0000-0002-8270-5228 ; 0000000192313386 ; 0000000242102254 ; 0000000282705228 ; 0000000278990951 ; 0000000299778482 ; 0000000162904820 ; 0000000247190580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30389783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1480559$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sommer, Manuel</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Gupta, Sayan</creatorcontrib><creatorcontrib>Kirst, Henning</creatorcontrib><creatorcontrib>Turmo, Aiko</creatorcontrib><creatorcontrib>Lechno-Yossef, Sigal</creatorcontrib><creatorcontrib>Burton, Rodney L.</creatorcontrib><creatorcontrib>Saechao, Christine</creatorcontrib><creatorcontrib>Sloan, Nancy B.</creatorcontrib><creatorcontrib>Cheng, Xiaolin</creatorcontrib><creatorcontrib>Chan, Leanne-Jade G.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Fuentes-Cabrera, Miguel</creatorcontrib><creatorcontrib>Ralston, Corie Y.</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States). MSU-DOE Plant Research Laboratory</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of β-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because β-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.</description><subject>bacterial microcompartment</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - physiology</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>cyanobacteria</subject><subject>Gene Deletion</subject><subject>heterohexamer</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Permeability</subject><subject>satellite locus</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><subject>β-carboxysome</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v1DAQxS0EotvCiTPI4lrtMv6IY1-QSkRpRSUOwImD5ThjkiqJI9ug3f-e0IUVnOZJ76c3TzOEvGCwYwzkm2XZMb0Dxgw8IhtWCb7lldSPyQZg1aC1OSPnOd8DABNMPiVnAoQ2tRYb8u0GC6bY495NmDK9jmnCjrYH2vjpo6Bu7h6UpLezT-gy0tIjbeK0jLgfyoHGQN9hcbRxqY37Q44T0s89jmN-Rp4EN2Z8_mdekK_X7780N9u7Tx9um6u7rZdGlW0tQu2AKaVEJ1ujoA6hBaMdDwGDN53RvOvAGC-YM5Ws6toEdKZlAXmtUVyQt8fc5Ue7lvc4l-RGu6Rhculgoxvs_8489PZ7_GmV4JLzeg14fQyIuQw2-6Gg732cZ_TFMqmhqswKXR4hn2LOCcNpAQP7-xF2WSzT9uERK_3q304n9u_lV-DlEbjPJaaTz1WltDKV-AUt7Y4B</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Sommer, Manuel</creator><creator>Sutter, Markus</creator><creator>Gupta, Sayan</creator><creator>Kirst, Henning</creator><creator>Turmo, Aiko</creator><creator>Lechno-Yossef, Sigal</creator><creator>Burton, Rodney L.</creator><creator>Saechao, Christine</creator><creator>Sloan, Nancy B.</creator><creator>Cheng, Xiaolin</creator><creator>Chan, Leanne-Jade G.</creator><creator>Petzold, Christopher J.</creator><creator>Fuentes-Cabrera, Miguel</creator><creator>Ralston, Corie Y.</creator><creator>Kerfeld, Cheryl A.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4719-0580</orcidid><orcidid>https://orcid.org/0000-0002-9977-8482</orcidid><orcidid>https://orcid.org/0000-0002-4210-2254</orcidid><orcidid>https://orcid.org/0000-0001-9231-3386</orcidid><orcidid>https://orcid.org/0000-0001-6290-4820</orcidid><orcidid>https://orcid.org/0000-0002-7899-0951</orcidid><orcidid>https://orcid.org/0000-0002-8270-5228</orcidid><orcidid>https://orcid.org/0000000192313386</orcidid><orcidid>https://orcid.org/0000000242102254</orcidid><orcidid>https://orcid.org/0000000282705228</orcidid><orcidid>https://orcid.org/0000000278990951</orcidid><orcidid>https://orcid.org/0000000299778482</orcidid><orcidid>https://orcid.org/0000000162904820</orcidid><orcidid>https://orcid.org/0000000247190580</orcidid></search><sort><creationdate>20190101</creationdate><title>Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells</title><author>Sommer, Manuel ; Sutter, Markus ; Gupta, Sayan ; Kirst, Henning ; Turmo, Aiko ; Lechno-Yossef, Sigal ; Burton, Rodney L. ; Saechao, Christine ; Sloan, Nancy B. ; Cheng, Xiaolin ; Chan, Leanne-Jade G. ; Petzold, Christopher J. ; Fuentes-Cabrera, Miguel ; Ralston, Corie Y. ; Kerfeld, Cheryl A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bacterial microcompartment</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - physiology</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>cyanobacteria</topic><topic>Gene Deletion</topic><topic>heterohexamer</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Permeability</topic><topic>satellite locus</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><topic>β-carboxysome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sommer, Manuel</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Gupta, Sayan</creatorcontrib><creatorcontrib>Kirst, Henning</creatorcontrib><creatorcontrib>Turmo, Aiko</creatorcontrib><creatorcontrib>Lechno-Yossef, Sigal</creatorcontrib><creatorcontrib>Burton, Rodney L.</creatorcontrib><creatorcontrib>Saechao, Christine</creatorcontrib><creatorcontrib>Sloan, Nancy B.</creatorcontrib><creatorcontrib>Cheng, Xiaolin</creatorcontrib><creatorcontrib>Chan, Leanne-Jade G.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Fuentes-Cabrera, Miguel</creatorcontrib><creatorcontrib>Ralston, Corie Y.</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States). MSU-DOE Plant Research Laboratory</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sommer, Manuel</au><au>Sutter, Markus</au><au>Gupta, Sayan</au><au>Kirst, Henning</au><au>Turmo, Aiko</au><au>Lechno-Yossef, Sigal</au><au>Burton, Rodney L.</au><au>Saechao, Christine</au><au>Sloan, Nancy B.</au><au>Cheng, Xiaolin</au><au>Chan, Leanne-Jade G.</au><au>Petzold, Christopher J.</au><au>Fuentes-Cabrera, Miguel</au><au>Ralston, Corie Y.</au><au>Kerfeld, Cheryl A.</au><aucorp>Michigan State Univ., East Lansing, MI (United States). MSU-DOE Plant Research Laboratory</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>179</volume><issue>1</issue><spage>156</spage><epage>167</epage><pages>156-167</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of β-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because β-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>30389783</pmid><doi>10.1104/pp.18.01190</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4719-0580</orcidid><orcidid>https://orcid.org/0000-0002-9977-8482</orcidid><orcidid>https://orcid.org/0000-0002-4210-2254</orcidid><orcidid>https://orcid.org/0000-0001-9231-3386</orcidid><orcidid>https://orcid.org/0000-0001-6290-4820</orcidid><orcidid>https://orcid.org/0000-0002-7899-0951</orcidid><orcidid>https://orcid.org/0000-0002-8270-5228</orcidid><orcidid>https://orcid.org/0000000192313386</orcidid><orcidid>https://orcid.org/0000000242102254</orcidid><orcidid>https://orcid.org/0000000282705228</orcidid><orcidid>https://orcid.org/0000000278990951</orcidid><orcidid>https://orcid.org/0000000299778482</orcidid><orcidid>https://orcid.org/0000000162904820</orcidid><orcidid>https://orcid.org/0000000247190580</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2019-01, Vol.179 (1), p.156-167 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6324227 |
source | Oxford Journals Online |
subjects | bacterial microcompartment Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Proteins - physiology BASIC BIOLOGICAL SCIENCES cyanobacteria Gene Deletion heterohexamer Models, Molecular Molecular Dynamics Simulation Permeability satellite locus Synechococcus - genetics Synechococcus - metabolism β-carboxysome |
title | Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterohexamers%20Formed%20by%20CcmK3%20and%20CcmK4%20Increase%20the%20Complexity%20of%20Beta%20Carboxysome%20Shells&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Sommer,%20Manuel&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States).%20MSU-DOE%20Plant%20Research%20Laboratory&rft.date=2019-01-01&rft.volume=179&rft.issue=1&rft.spage=156&rft.epage=167&rft.pages=156-167&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.01190&rft_dat=%3Cjstor_pubme%3E26568695%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-73f7a016663d4b9607ffb098a2ffefc9d982dd099c31a9545779fea9b1fe278e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30389783&rft_jstor_id=26568695&rfr_iscdi=true |