Loading…

Spatial Dynamics of Chromosome Translocations in Living Cells

Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within h...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2013-08, Vol.341 (6146), p.660-664
Main Authors: Roukos, Vassilis, Voss, Ty C., Schmidt, Christine K., Lee, Seungtaek, Wangsa, Darawalee, Misteli, Tom
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c575t-7cde81d8e3ea59a41f5daf13b6009f6e4b1fb42efb93b6e69be1beda9401d8023
cites cdi_FETCH-LOGICAL-c575t-7cde81d8e3ea59a41f5daf13b6009f6e4b1fb42efb93b6e69be1beda9401d8023
container_end_page 664
container_issue 6146
container_start_page 660
container_title Science (American Association for the Advancement of Science)
container_volume 341
creator Roukos, Vassilis
Voss, Ty C.
Schmidt, Christine K.
Lee, Seungtaek
Wangsa, Darawalee
Misteli, Tom
description Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle—independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.
doi_str_mv 10.1126/science.1237150
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6324928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23491300</jstor_id><sourcerecordid>23491300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-7cde81d8e3ea59a41f5daf13b6009f6e4b1fb42efb93b6e69be1beda9401d8023</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpaTZpzz01GHLJxYlGsmTp0EDYJmlhoYemZyHL40SLLW0kbyD_viq7CWkvPQ3M--YxM4-QT0DPAJg8z85jcHgGjLcg6BuyAKpFrRnlb8mCUi5rRVtxQA5zXlNaNM3fkwPGNdNawYJ8-bmxs7dj9fUp2Mm7XMWhWt6nOMUcJ6xukw15jK5AMeTKh2rlH324q5Y4jvkDeTfYMePHfT0iv66vbpff6tWPm-_Ly1XtRCvmunU9KugVcrRC2wYG0dsBeCfLRoPEpoOhaxgOnS49lLpD6LC3uqFlijJ-RC52vpttN2HvMMzJjmaT_GTTk4nWm7-V4O_NXXw0krNGM1UMTvcGKT5sMc9m8tmVE2zAuM0GFFVUUpD0_6iQUonyYFnQk3_QddymUD5hoAHVgmIUCnW-o1yKOSccXvYGav6kaPYpmn2KZeL49bkv_HNsBfi8A9Z5jumV3mjgJfXfJ9Wjow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418718201</pqid></control><display><type>article</type><title>Spatial Dynamics of Chromosome Translocations in Living Cells</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Alma/SFX Local Collection</source><source>Science Online科学在线</source><creator>Roukos, Vassilis ; Voss, Ty C. ; Schmidt, Christine K. ; Lee, Seungtaek ; Wangsa, Darawalee ; Misteli, Tom</creator><creatorcontrib>Roukos, Vassilis ; Voss, Ty C. ; Schmidt, Christine K. ; Lee, Seungtaek ; Wangsa, Darawalee ; Misteli, Tom</creatorcontrib><description>Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle—independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1237150</identifier><identifier>PMID: 23929981</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; B lymphocytes ; Bacterial Proteins - genetics ; Break in ; Cancer ; Carrier Proteins - genetics ; Cell Cycle ; Cells ; Cells (biology) ; Cellular biology ; Chromosome translocation ; Chromosomes ; Culture ; Deoxyribonucleic acid ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Activated Protein Kinase - antagonists &amp; inhibitors ; DNA-Binding Proteins - antagonists &amp; inhibitors ; Green Fluorescent Proteins - genetics ; High-Throughput Screening Assays ; Lac Operon ; Lac Repressors - genetics ; Merging ; Mice ; Microscopy ; Microscopy - methods ; Movies ; Neoplasms - genetics ; NIH 3T3 Cells ; Nuclear Proteins - antagonists &amp; inhibitors ; Polymerase chain reaction ; Proteins ; Proximity ; Repair ; Small interfering RNA ; Time-Lapse Imaging ; Translocation, Genetic</subject><ispartof>Science (American Association for the Advancement of Science), 2013-08, Vol.341 (6146), p.660-664</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-7cde81d8e3ea59a41f5daf13b6009f6e4b1fb42efb93b6e69be1beda9401d8023</citedby><cites>FETCH-LOGICAL-c575t-7cde81d8e3ea59a41f5daf13b6009f6e4b1fb42efb93b6e69be1beda9401d8023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23491300$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23491300$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23929981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roukos, Vassilis</creatorcontrib><creatorcontrib>Voss, Ty C.</creatorcontrib><creatorcontrib>Schmidt, Christine K.</creatorcontrib><creatorcontrib>Lee, Seungtaek</creatorcontrib><creatorcontrib>Wangsa, Darawalee</creatorcontrib><creatorcontrib>Misteli, Tom</creatorcontrib><title>Spatial Dynamics of Chromosome Translocations in Living Cells</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle—independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.</description><subject>Animals</subject><subject>B lymphocytes</subject><subject>Bacterial Proteins - genetics</subject><subject>Break in</subject><subject>Cancer</subject><subject>Carrier Proteins - genetics</subject><subject>Cell Cycle</subject><subject>Cells</subject><subject>Cells (biology)</subject><subject>Cellular biology</subject><subject>Chromosome translocation</subject><subject>Chromosomes</subject><subject>Culture</subject><subject>Deoxyribonucleic acid</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>DNA-Activated Protein Kinase - antagonists &amp; inhibitors</subject><subject>DNA-Binding Proteins - antagonists &amp; inhibitors</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>High-Throughput Screening Assays</subject><subject>Lac Operon</subject><subject>Lac Repressors - genetics</subject><subject>Merging</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Movies</subject><subject>Neoplasms - genetics</subject><subject>NIH 3T3 Cells</subject><subject>Nuclear Proteins - antagonists &amp; inhibitors</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Proximity</subject><subject>Repair</subject><subject>Small interfering RNA</subject><subject>Time-Lapse Imaging</subject><subject>Translocation, Genetic</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVpaTZpzz01GHLJxYlGsmTp0EDYJmlhoYemZyHL40SLLW0kbyD_viq7CWkvPQ3M--YxM4-QT0DPAJg8z85jcHgGjLcg6BuyAKpFrRnlb8mCUi5rRVtxQA5zXlNaNM3fkwPGNdNawYJ8-bmxs7dj9fUp2Mm7XMWhWt6nOMUcJ6xukw15jK5AMeTKh2rlH324q5Y4jvkDeTfYMePHfT0iv66vbpff6tWPm-_Ly1XtRCvmunU9KugVcrRC2wYG0dsBeCfLRoPEpoOhaxgOnS49lLpD6LC3uqFlijJ-RC52vpttN2HvMMzJjmaT_GTTk4nWm7-V4O_NXXw0krNGM1UMTvcGKT5sMc9m8tmVE2zAuM0GFFVUUpD0_6iQUonyYFnQk3_QddymUD5hoAHVgmIUCnW-o1yKOSccXvYGav6kaPYpmn2KZeL49bkv_HNsBfi8A9Z5jumV3mjgJfXfJ9Wjow</recordid><startdate>20130809</startdate><enddate>20130809</enddate><creator>Roukos, Vassilis</creator><creator>Voss, Ty C.</creator><creator>Schmidt, Christine K.</creator><creator>Lee, Seungtaek</creator><creator>Wangsa, Darawalee</creator><creator>Misteli, Tom</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130809</creationdate><title>Spatial Dynamics of Chromosome Translocations in Living Cells</title><author>Roukos, Vassilis ; Voss, Ty C. ; Schmidt, Christine K. ; Lee, Seungtaek ; Wangsa, Darawalee ; Misteli, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-7cde81d8e3ea59a41f5daf13b6009f6e4b1fb42efb93b6e69be1beda9401d8023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>B lymphocytes</topic><topic>Bacterial Proteins - genetics</topic><topic>Break in</topic><topic>Cancer</topic><topic>Carrier Proteins - genetics</topic><topic>Cell Cycle</topic><topic>Cells</topic><topic>Cells (biology)</topic><topic>Cellular biology</topic><topic>Chromosome translocation</topic><topic>Chromosomes</topic><topic>Culture</topic><topic>Deoxyribonucleic acid</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>DNA-Activated Protein Kinase - antagonists &amp; inhibitors</topic><topic>DNA-Binding Proteins - antagonists &amp; inhibitors</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>High-Throughput Screening Assays</topic><topic>Lac Operon</topic><topic>Lac Repressors - genetics</topic><topic>Merging</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Movies</topic><topic>Neoplasms - genetics</topic><topic>NIH 3T3 Cells</topic><topic>Nuclear Proteins - antagonists &amp; inhibitors</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Proximity</topic><topic>Repair</topic><topic>Small interfering RNA</topic><topic>Time-Lapse Imaging</topic><topic>Translocation, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roukos, Vassilis</creatorcontrib><creatorcontrib>Voss, Ty C.</creatorcontrib><creatorcontrib>Schmidt, Christine K.</creatorcontrib><creatorcontrib>Lee, Seungtaek</creatorcontrib><creatorcontrib>Wangsa, Darawalee</creatorcontrib><creatorcontrib>Misteli, Tom</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roukos, Vassilis</au><au>Voss, Ty C.</au><au>Schmidt, Christine K.</au><au>Lee, Seungtaek</au><au>Wangsa, Darawalee</au><au>Misteli, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Dynamics of Chromosome Translocations in Living Cells</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-08-09</date><risdate>2013</risdate><volume>341</volume><issue>6146</issue><spage>660</spage><epage>664</epage><pages>660-664</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle—independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23929981</pmid><doi>10.1126/science.1237150</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-08, Vol.341 (6146), p.660-664
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6324928
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Alma/SFX Local Collection; Science Online科学在线
subjects Animals
B lymphocytes
Bacterial Proteins - genetics
Break in
Cancer
Carrier Proteins - genetics
Cell Cycle
Cells
Cells (biology)
Cellular biology
Chromosome translocation
Chromosomes
Culture
Deoxyribonucleic acid
DNA Breaks, Double-Stranded
DNA Repair
DNA-Activated Protein Kinase - antagonists & inhibitors
DNA-Binding Proteins - antagonists & inhibitors
Green Fluorescent Proteins - genetics
High-Throughput Screening Assays
Lac Operon
Lac Repressors - genetics
Merging
Mice
Microscopy
Microscopy - methods
Movies
Neoplasms - genetics
NIH 3T3 Cells
Nuclear Proteins - antagonists & inhibitors
Polymerase chain reaction
Proteins
Proximity
Repair
Small interfering RNA
Time-Lapse Imaging
Translocation, Genetic
title Spatial Dynamics of Chromosome Translocations in Living Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Dynamics%20of%20Chromosome%20Translocations%20in%20Living%20Cells&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Roukos,%20Vassilis&rft.date=2013-08-09&rft.volume=341&rft.issue=6146&rft.spage=660&rft.epage=664&rft.pages=660-664&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1237150&rft_dat=%3Cjstor_pubme%3E23491300%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-7cde81d8e3ea59a41f5daf13b6009f6e4b1fb42efb93b6e69be1beda9401d8023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1418718201&rft_id=info:pmid/23929981&rft_jstor_id=23491300&rfr_iscdi=true