Loading…
Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide
Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a se...
Saved in:
Published in: | Journal of the American Chemical Society 2018-02, Vol.140 (8), p.2829-2840 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133 |
---|---|
cites | cdi_FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133 |
container_end_page | 2840 |
container_issue | 8 |
container_start_page | 2829 |
container_title | Journal of the American Chemical Society |
container_volume | 140 |
creator | Zhang, Wen Tam, Chun Pong Zhou, Lijun Oh, Seung Soo Wang, Jiawei Szostak, Jack W |
description | Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a second, downstream activated monomer. However, the rate of primer extension is further enhanced if the downstream monomer is replaced by an activated oligonucleotide. Even an unactivated downstream oligonucleotide provides a modest enhancement in the rate of reaction of a primer with a single activated monomer. Here we study the mechanism of these effects through crystallographic studies of RNA complexes with the recently synthesized nonhydrolyzable substrate analog, guanosine 5′-(4-methylimidazolyl)-phosphonate (ICG). ICG mimics 2-methylimidazole activated guanosine-5′-phosphate (2-MeImpG), a commonly used substrate in nonenzymatic primer extension experiments. We present crystal structures of primer-template complexes with either one or two ICG residues bound downstream of a primer. In both cases, the aryl-phosphonate moiety of the ICG adjacent to the primer is disordered. To investigate the effect of a downstream oligonucleotide, we transcribed a short RNA oligonucleotide with either a 5′-ICG residue, a 5′-phosphate or a 5′-hydroxyl. We then determined crystal structures of primer-template complexes with a bound ICG monomer sandwiched between the primer and each of the three downstream oligonucleotides. Surprisingly, all three oligonucleotides rigidify the ICG monomer conformation and position it for attack by the primer 3′-hydroxyl. Furthermore, when GpppG, an analog of the imidazolium-bridged intermediate, is sandwiched between an upstream primer and a downstream helper oligonucleotide, or covalently linked to the 5′-end of the downstream oligonucleotide, the complex is better preorganized for primer extension than in the absence of a downstream oligonucleotide. Our results suggest that a downstream helper oligonucleotide contributes to the catalysis of primer extension by favoring a reactive conformation of the primer-template-intermediate complex. |
doi_str_mv | 10.1021/jacs.7b11750 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6326529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999199884</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi0Eokvhxhn5yIEUjxM7zgWpWraAVLWowNlynEk3q8QuttN2-fV41aVQqRIHa2T5-c2MPkJeAzsCxuH9xth4VLcAtWBPyAIEZ4UALp-SBWOMF7WS5QF5EeMmXyuu4Dk54E0F0NRqQdK3FGab5mBGemHS4J0ZkfY-0LRGunJr4yx2dGmSGbdxiNT39Mw7dL-2U8YtvTg7pl_DMGGgq9uELmYFbbfU0I_-xsUU0Ez0fBwuvZvtiD4NHb4kz3ozRny1r4fkx8nq-_JzcXr-6cvy-LQwAmQqkNdQClVxydqyw0pYVjdSGSuRVaLvbCtZyUTbIHQSu1py1deoJBO5tFCWh-TDnfdqbifsLLqU99RXeVwTttqbQT98ccNaX_prLUsuBW-y4O1eEPzPGWPS0xAtjqNx6OeoOYBUUlSl-i8KTdPko1SV0Xd3qA0-xoD9_UTA9C5TvctU7zPN-Jt_t7iH_4T4t_Xu18bPIWcYH3f9BuY9rHY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999199884</pqid></control><display><type>article</type><title>Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Wen ; Tam, Chun Pong ; Zhou, Lijun ; Oh, Seung Soo ; Wang, Jiawei ; Szostak, Jack W</creator><creatorcontrib>Zhang, Wen ; Tam, Chun Pong ; Zhou, Lijun ; Oh, Seung Soo ; Wang, Jiawei ; Szostak, Jack W</creatorcontrib><description>Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a second, downstream activated monomer. However, the rate of primer extension is further enhanced if the downstream monomer is replaced by an activated oligonucleotide. Even an unactivated downstream oligonucleotide provides a modest enhancement in the rate of reaction of a primer with a single activated monomer. Here we study the mechanism of these effects through crystallographic studies of RNA complexes with the recently synthesized nonhydrolyzable substrate analog, guanosine 5′-(4-methylimidazolyl)-phosphonate (ICG). ICG mimics 2-methylimidazole activated guanosine-5′-phosphate (2-MeImpG), a commonly used substrate in nonenzymatic primer extension experiments. We present crystal structures of primer-template complexes with either one or two ICG residues bound downstream of a primer. In both cases, the aryl-phosphonate moiety of the ICG adjacent to the primer is disordered. To investigate the effect of a downstream oligonucleotide, we transcribed a short RNA oligonucleotide with either a 5′-ICG residue, a 5′-phosphate or a 5′-hydroxyl. We then determined crystal structures of primer-template complexes with a bound ICG monomer sandwiched between the primer and each of the three downstream oligonucleotides. Surprisingly, all three oligonucleotides rigidify the ICG monomer conformation and position it for attack by the primer 3′-hydroxyl. Furthermore, when GpppG, an analog of the imidazolium-bridged intermediate, is sandwiched between an upstream primer and a downstream helper oligonucleotide, or covalently linked to the 5′-end of the downstream oligonucleotide, the complex is better preorganized for primer extension than in the absence of a downstream oligonucleotide. Our results suggest that a downstream helper oligonucleotide contributes to the catalysis of primer extension by favoring a reactive conformation of the primer-template-intermediate complex.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b11750</identifier><identifier>PMID: 29411978</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; catalytic activity ; chemical bonding ; crystal structure ; guanosine ; moieties ; Nucleic Acid Conformation ; oligonucleotides ; Oligonucleotides - chemistry ; prebiotics ; RNA ; RNA - chemistry</subject><ispartof>Journal of the American Chemical Society, 2018-02, Vol.140 (8), p.2829-2840</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133</citedby><cites>FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133</cites><orcidid>0000-0003-4811-4384 ; 0000-0003-4131-1203 ; 0000-0001-6381-9011 ; 0000-0002-0393-4787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29411978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Tam, Chun Pong</creatorcontrib><creatorcontrib>Zhou, Lijun</creatorcontrib><creatorcontrib>Oh, Seung Soo</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Szostak, Jack W</creatorcontrib><title>Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a second, downstream activated monomer. However, the rate of primer extension is further enhanced if the downstream monomer is replaced by an activated oligonucleotide. Even an unactivated downstream oligonucleotide provides a modest enhancement in the rate of reaction of a primer with a single activated monomer. Here we study the mechanism of these effects through crystallographic studies of RNA complexes with the recently synthesized nonhydrolyzable substrate analog, guanosine 5′-(4-methylimidazolyl)-phosphonate (ICG). ICG mimics 2-methylimidazole activated guanosine-5′-phosphate (2-MeImpG), a commonly used substrate in nonenzymatic primer extension experiments. We present crystal structures of primer-template complexes with either one or two ICG residues bound downstream of a primer. In both cases, the aryl-phosphonate moiety of the ICG adjacent to the primer is disordered. To investigate the effect of a downstream oligonucleotide, we transcribed a short RNA oligonucleotide with either a 5′-ICG residue, a 5′-phosphate or a 5′-hydroxyl. We then determined crystal structures of primer-template complexes with a bound ICG monomer sandwiched between the primer and each of the three downstream oligonucleotides. Surprisingly, all three oligonucleotides rigidify the ICG monomer conformation and position it for attack by the primer 3′-hydroxyl. Furthermore, when GpppG, an analog of the imidazolium-bridged intermediate, is sandwiched between an upstream primer and a downstream helper oligonucleotide, or covalently linked to the 5′-end of the downstream oligonucleotide, the complex is better preorganized for primer extension than in the absence of a downstream oligonucleotide. Our results suggest that a downstream helper oligonucleotide contributes to the catalysis of primer extension by favoring a reactive conformation of the primer-template-intermediate complex.</description><subject>Catalysis</subject><subject>catalytic activity</subject><subject>chemical bonding</subject><subject>crystal structure</subject><subject>guanosine</subject><subject>moieties</subject><subject>Nucleic Acid Conformation</subject><subject>oligonucleotides</subject><subject>Oligonucleotides - chemistry</subject><subject>prebiotics</subject><subject>RNA</subject><subject>RNA - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQRi0Eokvhxhn5yIEUjxM7zgWpWraAVLWowNlynEk3q8QuttN2-fV41aVQqRIHa2T5-c2MPkJeAzsCxuH9xth4VLcAtWBPyAIEZ4UALp-SBWOMF7WS5QF5EeMmXyuu4Dk54E0F0NRqQdK3FGab5mBGemHS4J0ZkfY-0LRGunJr4yx2dGmSGbdxiNT39Mw7dL-2U8YtvTg7pl_DMGGgq9uELmYFbbfU0I_-xsUU0Ez0fBwuvZvtiD4NHb4kz3ozRny1r4fkx8nq-_JzcXr-6cvy-LQwAmQqkNdQClVxydqyw0pYVjdSGSuRVaLvbCtZyUTbIHQSu1py1deoJBO5tFCWh-TDnfdqbifsLLqU99RXeVwTttqbQT98ccNaX_prLUsuBW-y4O1eEPzPGWPS0xAtjqNx6OeoOYBUUlSl-i8KTdPko1SV0Xd3qA0-xoD9_UTA9C5TvctU7zPN-Jt_t7iH_4T4t_Xu18bPIWcYH3f9BuY9rHY</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Zhang, Wen</creator><creator>Tam, Chun Pong</creator><creator>Zhou, Lijun</creator><creator>Oh, Seung Soo</creator><creator>Wang, Jiawei</creator><creator>Szostak, Jack W</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4811-4384</orcidid><orcidid>https://orcid.org/0000-0003-4131-1203</orcidid><orcidid>https://orcid.org/0000-0001-6381-9011</orcidid><orcidid>https://orcid.org/0000-0002-0393-4787</orcidid></search><sort><creationdate>20180228</creationdate><title>Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide</title><author>Zhang, Wen ; Tam, Chun Pong ; Zhou, Lijun ; Oh, Seung Soo ; Wang, Jiawei ; Szostak, Jack W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>catalytic activity</topic><topic>chemical bonding</topic><topic>crystal structure</topic><topic>guanosine</topic><topic>moieties</topic><topic>Nucleic Acid Conformation</topic><topic>oligonucleotides</topic><topic>Oligonucleotides - chemistry</topic><topic>prebiotics</topic><topic>RNA</topic><topic>RNA - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Tam, Chun Pong</creatorcontrib><creatorcontrib>Zhou, Lijun</creatorcontrib><creatorcontrib>Oh, Seung Soo</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Szostak, Jack W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wen</au><au>Tam, Chun Pong</au><au>Zhou, Lijun</au><au>Oh, Seung Soo</au><au>Wang, Jiawei</au><au>Szostak, Jack W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-02-28</date><risdate>2018</risdate><volume>140</volume><issue>8</issue><spage>2829</spage><epage>2840</epage><pages>2829-2840</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a second, downstream activated monomer. However, the rate of primer extension is further enhanced if the downstream monomer is replaced by an activated oligonucleotide. Even an unactivated downstream oligonucleotide provides a modest enhancement in the rate of reaction of a primer with a single activated monomer. Here we study the mechanism of these effects through crystallographic studies of RNA complexes with the recently synthesized nonhydrolyzable substrate analog, guanosine 5′-(4-methylimidazolyl)-phosphonate (ICG). ICG mimics 2-methylimidazole activated guanosine-5′-phosphate (2-MeImpG), a commonly used substrate in nonenzymatic primer extension experiments. We present crystal structures of primer-template complexes with either one or two ICG residues bound downstream of a primer. In both cases, the aryl-phosphonate moiety of the ICG adjacent to the primer is disordered. To investigate the effect of a downstream oligonucleotide, we transcribed a short RNA oligonucleotide with either a 5′-ICG residue, a 5′-phosphate or a 5′-hydroxyl. We then determined crystal structures of primer-template complexes with a bound ICG monomer sandwiched between the primer and each of the three downstream oligonucleotides. Surprisingly, all three oligonucleotides rigidify the ICG monomer conformation and position it for attack by the primer 3′-hydroxyl. Furthermore, when GpppG, an analog of the imidazolium-bridged intermediate, is sandwiched between an upstream primer and a downstream helper oligonucleotide, or covalently linked to the 5′-end of the downstream oligonucleotide, the complex is better preorganized for primer extension than in the absence of a downstream oligonucleotide. Our results suggest that a downstream helper oligonucleotide contributes to the catalysis of primer extension by favoring a reactive conformation of the primer-template-intermediate complex.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29411978</pmid><doi>10.1021/jacs.7b11750</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4811-4384</orcidid><orcidid>https://orcid.org/0000-0003-4131-1203</orcidid><orcidid>https://orcid.org/0000-0001-6381-9011</orcidid><orcidid>https://orcid.org/0000-0002-0393-4787</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2018-02, Vol.140 (8), p.2829-2840 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6326529 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Catalysis catalytic activity chemical bonding crystal structure guanosine moieties Nucleic Acid Conformation oligonucleotides Oligonucleotides - chemistry prebiotics RNA RNA - chemistry |
title | Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T00%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Rationale%20for%20the%20Enhanced%20Catalysis%20of%20Nonenzymatic%20RNA%20Primer%20Extension%20by%20a%20Downstream%20Oligonucleotide&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Wen&rft.date=2018-02-28&rft.volume=140&rft.issue=8&rft.spage=2829&rft.epage=2840&rft.pages=2829-2840&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b11750&rft_dat=%3Cproquest_pubme%3E1999199884%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1999199884&rft_id=info:pmid/29411978&rfr_iscdi=true |