Loading…

Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide

Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a se...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2018-02, Vol.140 (8), p.2829-2840
Main Authors: Zhang, Wen, Tam, Chun Pong, Zhou, Lijun, Oh, Seung Soo, Wang, Jiawei, Szostak, Jack W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133
cites cdi_FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133
container_end_page 2840
container_issue 8
container_start_page 2829
container_title Journal of the American Chemical Society
container_volume 140
creator Zhang, Wen
Tam, Chun Pong
Zhou, Lijun
Oh, Seung Soo
Wang, Jiawei
Szostak, Jack W
description Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a second, downstream activated monomer. However, the rate of primer extension is further enhanced if the downstream monomer is replaced by an activated oligonucleotide. Even an unactivated downstream oligonucleotide provides a modest enhancement in the rate of reaction of a primer with a single activated monomer. Here we study the mechanism of these effects through crystallographic studies of RNA complexes with the recently synthesized nonhydrolyzable substrate analog, guanosine 5′-(4-methylimidazolyl)-phosphonate (ICG). ICG mimics 2-methylimidazole activated guanosine-5′-phosphate (2-MeImpG), a commonly used substrate in nonenzymatic primer extension experiments. We present crystal structures of primer-template complexes with either one or two ICG residues bound downstream of a primer. In both cases, the aryl-phosphonate moiety of the ICG adjacent to the primer is disordered. To investigate the effect of a downstream oligonucleotide, we transcribed a short RNA oligonucleotide with either a 5′-ICG residue, a 5′-phosphate or a 5′-hydroxyl. We then determined crystal structures of primer-template complexes with a bound ICG monomer sandwiched between the primer and each of the three downstream oligonucleotides. Surprisingly, all three oligonucleotides rigidify the ICG monomer conformation and position it for attack by the primer 3′-hydroxyl. Furthermore, when GpppG, an analog of the imidazolium-bridged intermediate, is sandwiched between an upstream primer and a downstream helper oligonucleotide, or covalently linked to the 5′-end of the downstream oligonucleotide, the complex is better preorganized for primer extension than in the absence of a downstream oligonucleotide. Our results suggest that a downstream helper oligonucleotide contributes to the catalysis of primer extension by favoring a reactive conformation of the primer-template-intermediate complex.
doi_str_mv 10.1021/jacs.7b11750
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6326529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999199884</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi0Eokvhxhn5yIEUjxM7zgWpWraAVLWowNlynEk3q8QuttN2-fV41aVQqRIHa2T5-c2MPkJeAzsCxuH9xth4VLcAtWBPyAIEZ4UALp-SBWOMF7WS5QF5EeMmXyuu4Dk54E0F0NRqQdK3FGab5mBGemHS4J0ZkfY-0LRGunJr4yx2dGmSGbdxiNT39Mw7dL-2U8YtvTg7pl_DMGGgq9uELmYFbbfU0I_-xsUU0Ez0fBwuvZvtiD4NHb4kz3ozRny1r4fkx8nq-_JzcXr-6cvy-LQwAmQqkNdQClVxydqyw0pYVjdSGSuRVaLvbCtZyUTbIHQSu1py1deoJBO5tFCWh-TDnfdqbifsLLqU99RXeVwTttqbQT98ccNaX_prLUsuBW-y4O1eEPzPGWPS0xAtjqNx6OeoOYBUUlSl-i8KTdPko1SV0Xd3qA0-xoD9_UTA9C5TvctU7zPN-Jt_t7iH_4T4t_Xu18bPIWcYH3f9BuY9rHY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999199884</pqid></control><display><type>article</type><title>Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Wen ; Tam, Chun Pong ; Zhou, Lijun ; Oh, Seung Soo ; Wang, Jiawei ; Szostak, Jack W</creator><creatorcontrib>Zhang, Wen ; Tam, Chun Pong ; Zhou, Lijun ; Oh, Seung Soo ; Wang, Jiawei ; Szostak, Jack W</creatorcontrib><description>Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a second, downstream activated monomer. However, the rate of primer extension is further enhanced if the downstream monomer is replaced by an activated oligonucleotide. Even an unactivated downstream oligonucleotide provides a modest enhancement in the rate of reaction of a primer with a single activated monomer. Here we study the mechanism of these effects through crystallographic studies of RNA complexes with the recently synthesized nonhydrolyzable substrate analog, guanosine 5′-(4-methylimidazolyl)-phosphonate (ICG). ICG mimics 2-methylimidazole activated guanosine-5′-phosphate (2-MeImpG), a commonly used substrate in nonenzymatic primer extension experiments. We present crystal structures of primer-template complexes with either one or two ICG residues bound downstream of a primer. In both cases, the aryl-phosphonate moiety of the ICG adjacent to the primer is disordered. To investigate the effect of a downstream oligonucleotide, we transcribed a short RNA oligonucleotide with either a 5′-ICG residue, a 5′-phosphate or a 5′-hydroxyl. We then determined crystal structures of primer-template complexes with a bound ICG monomer sandwiched between the primer and each of the three downstream oligonucleotides. Surprisingly, all three oligonucleotides rigidify the ICG monomer conformation and position it for attack by the primer 3′-hydroxyl. Furthermore, when GpppG, an analog of the imidazolium-bridged intermediate, is sandwiched between an upstream primer and a downstream helper oligonucleotide, or covalently linked to the 5′-end of the downstream oligonucleotide, the complex is better preorganized for primer extension than in the absence of a downstream oligonucleotide. Our results suggest that a downstream helper oligonucleotide contributes to the catalysis of primer extension by favoring a reactive conformation of the primer-template-intermediate complex.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b11750</identifier><identifier>PMID: 29411978</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; catalytic activity ; chemical bonding ; crystal structure ; guanosine ; moieties ; Nucleic Acid Conformation ; oligonucleotides ; Oligonucleotides - chemistry ; prebiotics ; RNA ; RNA - chemistry</subject><ispartof>Journal of the American Chemical Society, 2018-02, Vol.140 (8), p.2829-2840</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133</citedby><cites>FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133</cites><orcidid>0000-0003-4811-4384 ; 0000-0003-4131-1203 ; 0000-0001-6381-9011 ; 0000-0002-0393-4787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29411978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Tam, Chun Pong</creatorcontrib><creatorcontrib>Zhou, Lijun</creatorcontrib><creatorcontrib>Oh, Seung Soo</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Szostak, Jack W</creatorcontrib><title>Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a second, downstream activated monomer. However, the rate of primer extension is further enhanced if the downstream monomer is replaced by an activated oligonucleotide. Even an unactivated downstream oligonucleotide provides a modest enhancement in the rate of reaction of a primer with a single activated monomer. Here we study the mechanism of these effects through crystallographic studies of RNA complexes with the recently synthesized nonhydrolyzable substrate analog, guanosine 5′-(4-methylimidazolyl)-phosphonate (ICG). ICG mimics 2-methylimidazole activated guanosine-5′-phosphate (2-MeImpG), a commonly used substrate in nonenzymatic primer extension experiments. We present crystal structures of primer-template complexes with either one or two ICG residues bound downstream of a primer. In both cases, the aryl-phosphonate moiety of the ICG adjacent to the primer is disordered. To investigate the effect of a downstream oligonucleotide, we transcribed a short RNA oligonucleotide with either a 5′-ICG residue, a 5′-phosphate or a 5′-hydroxyl. We then determined crystal structures of primer-template complexes with a bound ICG monomer sandwiched between the primer and each of the three downstream oligonucleotides. Surprisingly, all three oligonucleotides rigidify the ICG monomer conformation and position it for attack by the primer 3′-hydroxyl. Furthermore, when GpppG, an analog of the imidazolium-bridged intermediate, is sandwiched between an upstream primer and a downstream helper oligonucleotide, or covalently linked to the 5′-end of the downstream oligonucleotide, the complex is better preorganized for primer extension than in the absence of a downstream oligonucleotide. Our results suggest that a downstream helper oligonucleotide contributes to the catalysis of primer extension by favoring a reactive conformation of the primer-template-intermediate complex.</description><subject>Catalysis</subject><subject>catalytic activity</subject><subject>chemical bonding</subject><subject>crystal structure</subject><subject>guanosine</subject><subject>moieties</subject><subject>Nucleic Acid Conformation</subject><subject>oligonucleotides</subject><subject>Oligonucleotides - chemistry</subject><subject>prebiotics</subject><subject>RNA</subject><subject>RNA - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQRi0Eokvhxhn5yIEUjxM7zgWpWraAVLWowNlynEk3q8QuttN2-fV41aVQqRIHa2T5-c2MPkJeAzsCxuH9xth4VLcAtWBPyAIEZ4UALp-SBWOMF7WS5QF5EeMmXyuu4Dk54E0F0NRqQdK3FGab5mBGemHS4J0ZkfY-0LRGunJr4yx2dGmSGbdxiNT39Mw7dL-2U8YtvTg7pl_DMGGgq9uELmYFbbfU0I_-xsUU0Ez0fBwuvZvtiD4NHb4kz3ozRny1r4fkx8nq-_JzcXr-6cvy-LQwAmQqkNdQClVxydqyw0pYVjdSGSuRVaLvbCtZyUTbIHQSu1py1deoJBO5tFCWh-TDnfdqbifsLLqU99RXeVwTttqbQT98ccNaX_prLUsuBW-y4O1eEPzPGWPS0xAtjqNx6OeoOYBUUlSl-i8KTdPko1SV0Xd3qA0-xoD9_UTA9C5TvctU7zPN-Jt_t7iH_4T4t_Xu18bPIWcYH3f9BuY9rHY</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Zhang, Wen</creator><creator>Tam, Chun Pong</creator><creator>Zhou, Lijun</creator><creator>Oh, Seung Soo</creator><creator>Wang, Jiawei</creator><creator>Szostak, Jack W</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4811-4384</orcidid><orcidid>https://orcid.org/0000-0003-4131-1203</orcidid><orcidid>https://orcid.org/0000-0001-6381-9011</orcidid><orcidid>https://orcid.org/0000-0002-0393-4787</orcidid></search><sort><creationdate>20180228</creationdate><title>Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide</title><author>Zhang, Wen ; Tam, Chun Pong ; Zhou, Lijun ; Oh, Seung Soo ; Wang, Jiawei ; Szostak, Jack W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>catalytic activity</topic><topic>chemical bonding</topic><topic>crystal structure</topic><topic>guanosine</topic><topic>moieties</topic><topic>Nucleic Acid Conformation</topic><topic>oligonucleotides</topic><topic>Oligonucleotides - chemistry</topic><topic>prebiotics</topic><topic>RNA</topic><topic>RNA - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Tam, Chun Pong</creatorcontrib><creatorcontrib>Zhou, Lijun</creatorcontrib><creatorcontrib>Oh, Seung Soo</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Szostak, Jack W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wen</au><au>Tam, Chun Pong</au><au>Zhou, Lijun</au><au>Oh, Seung Soo</au><au>Wang, Jiawei</au><au>Szostak, Jack W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-02-28</date><risdate>2018</risdate><volume>140</volume><issue>8</issue><spage>2829</spage><epage>2840</epage><pages>2829-2840</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a second, downstream activated monomer. However, the rate of primer extension is further enhanced if the downstream monomer is replaced by an activated oligonucleotide. Even an unactivated downstream oligonucleotide provides a modest enhancement in the rate of reaction of a primer with a single activated monomer. Here we study the mechanism of these effects through crystallographic studies of RNA complexes with the recently synthesized nonhydrolyzable substrate analog, guanosine 5′-(4-methylimidazolyl)-phosphonate (ICG). ICG mimics 2-methylimidazole activated guanosine-5′-phosphate (2-MeImpG), a commonly used substrate in nonenzymatic primer extension experiments. We present crystal structures of primer-template complexes with either one or two ICG residues bound downstream of a primer. In both cases, the aryl-phosphonate moiety of the ICG adjacent to the primer is disordered. To investigate the effect of a downstream oligonucleotide, we transcribed a short RNA oligonucleotide with either a 5′-ICG residue, a 5′-phosphate or a 5′-hydroxyl. We then determined crystal structures of primer-template complexes with a bound ICG monomer sandwiched between the primer and each of the three downstream oligonucleotides. Surprisingly, all three oligonucleotides rigidify the ICG monomer conformation and position it for attack by the primer 3′-hydroxyl. Furthermore, when GpppG, an analog of the imidazolium-bridged intermediate, is sandwiched between an upstream primer and a downstream helper oligonucleotide, or covalently linked to the 5′-end of the downstream oligonucleotide, the complex is better preorganized for primer extension than in the absence of a downstream oligonucleotide. Our results suggest that a downstream helper oligonucleotide contributes to the catalysis of primer extension by favoring a reactive conformation of the primer-template-intermediate complex.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29411978</pmid><doi>10.1021/jacs.7b11750</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4811-4384</orcidid><orcidid>https://orcid.org/0000-0003-4131-1203</orcidid><orcidid>https://orcid.org/0000-0001-6381-9011</orcidid><orcidid>https://orcid.org/0000-0002-0393-4787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-02, Vol.140 (8), p.2829-2840
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6326529
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalysis
catalytic activity
chemical bonding
crystal structure
guanosine
moieties
Nucleic Acid Conformation
oligonucleotides
Oligonucleotides - chemistry
prebiotics
RNA
RNA - chemistry
title Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T00%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Rationale%20for%20the%20Enhanced%20Catalysis%20of%20Nonenzymatic%20RNA%20Primer%20Extension%20by%20a%20Downstream%20Oligonucleotide&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Wen&rft.date=2018-02-28&rft.volume=140&rft.issue=8&rft.spage=2829&rft.epage=2840&rft.pages=2829-2840&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b11750&rft_dat=%3Cproquest_pubme%3E1999199884%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a516t-e2713584260b3de45c07968ac6e045fdcb60305b9e1d6ed7628f7e8605f7eb133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1999199884&rft_id=info:pmid/29411978&rfr_iscdi=true