Loading…

Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer

Programmed death ligand-1 (PD-L1), encoded by the gene, is a target for immune checkpoint blockade; however, little is known about genomic alterations. A subset of small-cell lung cancer (SCLC) exhibits increased copy number of chromosome 9p24, on which resides; however, most SCLCs show low expressi...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research 2017-03, Vol.23 (5), p.1220-1226
Main Authors: George, Julie, Saito, Motonobu, Tsuta, Koji, Iwakawa, Reika, Shiraishi, Kouya, Scheel, Andreas H, Uchida, Shinsuke, Watanabe, Shun-Ichi, Nishikawa, Ryo, Noguchi, Masayuki, Peifer, Martin, Jang, Se Jin, Petersen, Iver, Büttner, Reinhard, Harris, Curtis C, Yokota, Jun, Thomas, Roman K, Kohno, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c538t-b51b55c1297a51e7832c0cc1ee71dac16eaf40bf86f7e8550149c7175ec8e2d53
cites cdi_FETCH-LOGICAL-c538t-b51b55c1297a51e7832c0cc1ee71dac16eaf40bf86f7e8550149c7175ec8e2d53
container_end_page 1226
container_issue 5
container_start_page 1220
container_title Clinical cancer research
container_volume 23
creator George, Julie
Saito, Motonobu
Tsuta, Koji
Iwakawa, Reika
Shiraishi, Kouya
Scheel, Andreas H
Uchida, Shinsuke
Watanabe, Shun-Ichi
Nishikawa, Ryo
Noguchi, Masayuki
Peifer, Martin
Jang, Se Jin
Petersen, Iver
Büttner, Reinhard
Harris, Curtis C
Yokota, Jun
Thomas, Roman K
Kohno, Takashi
description Programmed death ligand-1 (PD-L1), encoded by the gene, is a target for immune checkpoint blockade; however, little is known about genomic alterations. A subset of small-cell lung cancer (SCLC) exhibits increased copy number of chromosome 9p24, on which resides; however, most SCLCs show low expression of PD-L1. We therefore examined whether is a target of recurrent genomic alterations. We examined somatic copy number alterations in two patient cohorts by quantitative real-time PCR in 72 human SCLC cases (cohort 1) and SNP array analysis in 138 human SCLC cases (cohort 2). Whole-genome sequencing revealed the detailed genomic structure underlying focal amplification. PD-L1 expression in amplified cases from cohorts 1 and 2 was further examined by transcriptome sequencing and immunohistochemical (IHC) staining. By examining somatic copy number alterations in two cohorts of primary human SCLC specimens, we observed 9p24 copy number gains (where resides) and focal, high-level amplification of We found evidence for genomic targeting of , suggesting selection during oncogenic transformation. amplification was caused by genomic rearrangements not affecting the open reading frame, thus leading to massively increased transcripts and high level expression of PD-L1. A subset (4/210, 1.9%) of human SCLC patient cases exhibits massive expression of PD-L1 caused by focal amplification of Such tumors may be particularly susceptible to immune checkpoint blockade. .
doi_str_mv 10.1158/1078-0432.ccr-16-1069
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6329376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859734414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-b51b55c1297a51e7832c0cc1ee71dac16eaf40bf86f7e8550149c7175ec8e2d53</originalsourceid><addsrcrecordid>eNqNkU1PGzEQhi1EBYH2J7RaqRc4GDz-3gsi2tAUKRKoH2fLcbzgaNcO3iwS_55dEVDpidNYmmdezfhB6CuQMwChz4EojQln9My5jEFiILLcQxMQQmFGpdgf3q_MITrqujUhwIHwA3RIlaSEKjVBl3MfUxtcMW03TaiDs9uQYpHqoppRxYuT2xlewGkRYvG7tU2DK980xaKPd0Vlo_P5M_pU26bzX3b1GP39cfWn-okXN_PrarrATjC9xUsBSyEc0FJZAV5pRh1xDrxXsLIOpLc1J8tay1p5LcSwaukUKOGd9nQl2DG6eMnd9MvWr5yP22wbs8mhtfnJJBvM-04M9-YuPRrJaMmUHAJOdgE5PfS-25o2dG64xkaf-s6AVkpTpoF8ABWlYpwDH9Dv_6Hr1Oc4_ISBUjNOBx8jJV4ol1PXZV-_7Q3EjDrNqMqMqkxV_TIgzahzmPv279FvU6_-2DNjLpgz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983421554</pqid></control><display><type>article</type><title>Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer</title><source>Freely Accessible Science Journals</source><creator>George, Julie ; Saito, Motonobu ; Tsuta, Koji ; Iwakawa, Reika ; Shiraishi, Kouya ; Scheel, Andreas H ; Uchida, Shinsuke ; Watanabe, Shun-Ichi ; Nishikawa, Ryo ; Noguchi, Masayuki ; Peifer, Martin ; Jang, Se Jin ; Petersen, Iver ; Büttner, Reinhard ; Harris, Curtis C ; Yokota, Jun ; Thomas, Roman K ; Kohno, Takashi</creator><creatorcontrib>George, Julie ; Saito, Motonobu ; Tsuta, Koji ; Iwakawa, Reika ; Shiraishi, Kouya ; Scheel, Andreas H ; Uchida, Shinsuke ; Watanabe, Shun-Ichi ; Nishikawa, Ryo ; Noguchi, Masayuki ; Peifer, Martin ; Jang, Se Jin ; Petersen, Iver ; Büttner, Reinhard ; Harris, Curtis C ; Yokota, Jun ; Thomas, Roman K ; Kohno, Takashi</creatorcontrib><description>Programmed death ligand-1 (PD-L1), encoded by the gene, is a target for immune checkpoint blockade; however, little is known about genomic alterations. A subset of small-cell lung cancer (SCLC) exhibits increased copy number of chromosome 9p24, on which resides; however, most SCLCs show low expression of PD-L1. We therefore examined whether is a target of recurrent genomic alterations. We examined somatic copy number alterations in two patient cohorts by quantitative real-time PCR in 72 human SCLC cases (cohort 1) and SNP array analysis in 138 human SCLC cases (cohort 2). Whole-genome sequencing revealed the detailed genomic structure underlying focal amplification. PD-L1 expression in amplified cases from cohorts 1 and 2 was further examined by transcriptome sequencing and immunohistochemical (IHC) staining. By examining somatic copy number alterations in two cohorts of primary human SCLC specimens, we observed 9p24 copy number gains (where resides) and focal, high-level amplification of We found evidence for genomic targeting of , suggesting selection during oncogenic transformation. amplification was caused by genomic rearrangements not affecting the open reading frame, thus leading to massively increased transcripts and high level expression of PD-L1. A subset (4/210, 1.9%) of human SCLC patient cases exhibits massive expression of PD-L1 caused by focal amplification of Such tumors may be particularly susceptible to immune checkpoint blockade. .</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.ccr-16-1069</identifier><identifier>PMID: 27620277</identifier><language>eng</language><publisher>United States: American Association for Cancer Research Inc</publisher><subject>Aged ; Aged, 80 and over ; Amplification ; Apoptosis ; B7-H1 Antigen - genetics ; Biomarkers, Tumor - genetics ; Cancer ; Chromosome 9 ; Chromosomes, Human, Pair 9 - genetics ; Copy number ; DNA Copy Number Variations - genetics ; Experimental design ; Female ; Gene Amplification - genetics ; Gene expression ; Gene Expression Regulation, Neoplastic ; Gene sequencing ; Genetic transformation ; Genome, Human ; Genomes ; Humans ; Immune checkpoint ; Leukemia, Lymphocytic, Chronic, B-Cell - genetics ; Leukemia, Lymphocytic, Chronic, B-Cell - pathology ; Levels ; Lung cancer ; Male ; Middle Aged ; PD-L1 protein ; Polymorphism, Single Nucleotide ; Single-nucleotide polymorphism ; Small cell lung carcinoma ; Tumors</subject><ispartof>Clinical cancer research, 2017-03, Vol.23 (5), p.1220-1226</ispartof><rights>2016 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research Inc Mar 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-b51b55c1297a51e7832c0cc1ee71dac16eaf40bf86f7e8550149c7175ec8e2d53</citedby><cites>FETCH-LOGICAL-c538t-b51b55c1297a51e7832c0cc1ee71dac16eaf40bf86f7e8550149c7175ec8e2d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27620277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>George, Julie</creatorcontrib><creatorcontrib>Saito, Motonobu</creatorcontrib><creatorcontrib>Tsuta, Koji</creatorcontrib><creatorcontrib>Iwakawa, Reika</creatorcontrib><creatorcontrib>Shiraishi, Kouya</creatorcontrib><creatorcontrib>Scheel, Andreas H</creatorcontrib><creatorcontrib>Uchida, Shinsuke</creatorcontrib><creatorcontrib>Watanabe, Shun-Ichi</creatorcontrib><creatorcontrib>Nishikawa, Ryo</creatorcontrib><creatorcontrib>Noguchi, Masayuki</creatorcontrib><creatorcontrib>Peifer, Martin</creatorcontrib><creatorcontrib>Jang, Se Jin</creatorcontrib><creatorcontrib>Petersen, Iver</creatorcontrib><creatorcontrib>Büttner, Reinhard</creatorcontrib><creatorcontrib>Harris, Curtis C</creatorcontrib><creatorcontrib>Yokota, Jun</creatorcontrib><creatorcontrib>Thomas, Roman K</creatorcontrib><creatorcontrib>Kohno, Takashi</creatorcontrib><title>Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Programmed death ligand-1 (PD-L1), encoded by the gene, is a target for immune checkpoint blockade; however, little is known about genomic alterations. A subset of small-cell lung cancer (SCLC) exhibits increased copy number of chromosome 9p24, on which resides; however, most SCLCs show low expression of PD-L1. We therefore examined whether is a target of recurrent genomic alterations. We examined somatic copy number alterations in two patient cohorts by quantitative real-time PCR in 72 human SCLC cases (cohort 1) and SNP array analysis in 138 human SCLC cases (cohort 2). Whole-genome sequencing revealed the detailed genomic structure underlying focal amplification. PD-L1 expression in amplified cases from cohorts 1 and 2 was further examined by transcriptome sequencing and immunohistochemical (IHC) staining. By examining somatic copy number alterations in two cohorts of primary human SCLC specimens, we observed 9p24 copy number gains (where resides) and focal, high-level amplification of We found evidence for genomic targeting of , suggesting selection during oncogenic transformation. amplification was caused by genomic rearrangements not affecting the open reading frame, thus leading to massively increased transcripts and high level expression of PD-L1. A subset (4/210, 1.9%) of human SCLC patient cases exhibits massive expression of PD-L1 caused by focal amplification of Such tumors may be particularly susceptible to immune checkpoint blockade. .</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Amplification</subject><subject>Apoptosis</subject><subject>B7-H1 Antigen - genetics</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Cancer</subject><subject>Chromosome 9</subject><subject>Chromosomes, Human, Pair 9 - genetics</subject><subject>Copy number</subject><subject>DNA Copy Number Variations - genetics</subject><subject>Experimental design</subject><subject>Female</subject><subject>Gene Amplification - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene sequencing</subject><subject>Genetic transformation</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Leukemia, Lymphocytic, Chronic, B-Cell - genetics</subject><subject>Leukemia, Lymphocytic, Chronic, B-Cell - pathology</subject><subject>Levels</subject><subject>Lung cancer</subject><subject>Male</subject><subject>Middle Aged</subject><subject>PD-L1 protein</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Single-nucleotide polymorphism</subject><subject>Small cell lung carcinoma</subject><subject>Tumors</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PGzEQhi1EBYH2J7RaqRc4GDz-3gsi2tAUKRKoH2fLcbzgaNcO3iwS_55dEVDpidNYmmdezfhB6CuQMwChz4EojQln9My5jEFiILLcQxMQQmFGpdgf3q_MITrqujUhwIHwA3RIlaSEKjVBl3MfUxtcMW03TaiDs9uQYpHqoppRxYuT2xlewGkRYvG7tU2DK980xaKPd0Vlo_P5M_pU26bzX3b1GP39cfWn-okXN_PrarrATjC9xUsBSyEc0FJZAV5pRh1xDrxXsLIOpLc1J8tay1p5LcSwaukUKOGd9nQl2DG6eMnd9MvWr5yP22wbs8mhtfnJJBvM-04M9-YuPRrJaMmUHAJOdgE5PfS-25o2dG64xkaf-s6AVkpTpoF8ABWlYpwDH9Dv_6Hr1Oc4_ISBUjNOBx8jJV4ol1PXZV-_7Q3EjDrNqMqMqkxV_TIgzahzmPv279FvU6_-2DNjLpgz</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>George, Julie</creator><creator>Saito, Motonobu</creator><creator>Tsuta, Koji</creator><creator>Iwakawa, Reika</creator><creator>Shiraishi, Kouya</creator><creator>Scheel, Andreas H</creator><creator>Uchida, Shinsuke</creator><creator>Watanabe, Shun-Ichi</creator><creator>Nishikawa, Ryo</creator><creator>Noguchi, Masayuki</creator><creator>Peifer, Martin</creator><creator>Jang, Se Jin</creator><creator>Petersen, Iver</creator><creator>Büttner, Reinhard</creator><creator>Harris, Curtis C</creator><creator>Yokota, Jun</creator><creator>Thomas, Roman K</creator><creator>Kohno, Takashi</creator><general>American Association for Cancer Research Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170301</creationdate><title>Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer</title><author>George, Julie ; Saito, Motonobu ; Tsuta, Koji ; Iwakawa, Reika ; Shiraishi, Kouya ; Scheel, Andreas H ; Uchida, Shinsuke ; Watanabe, Shun-Ichi ; Nishikawa, Ryo ; Noguchi, Masayuki ; Peifer, Martin ; Jang, Se Jin ; Petersen, Iver ; Büttner, Reinhard ; Harris, Curtis C ; Yokota, Jun ; Thomas, Roman K ; Kohno, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-b51b55c1297a51e7832c0cc1ee71dac16eaf40bf86f7e8550149c7175ec8e2d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Amplification</topic><topic>Apoptosis</topic><topic>B7-H1 Antigen - genetics</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Cancer</topic><topic>Chromosome 9</topic><topic>Chromosomes, Human, Pair 9 - genetics</topic><topic>Copy number</topic><topic>DNA Copy Number Variations - genetics</topic><topic>Experimental design</topic><topic>Female</topic><topic>Gene Amplification - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene sequencing</topic><topic>Genetic transformation</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Leukemia, Lymphocytic, Chronic, B-Cell - genetics</topic><topic>Leukemia, Lymphocytic, Chronic, B-Cell - pathology</topic><topic>Levels</topic><topic>Lung cancer</topic><topic>Male</topic><topic>Middle Aged</topic><topic>PD-L1 protein</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Single-nucleotide polymorphism</topic><topic>Small cell lung carcinoma</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Julie</creatorcontrib><creatorcontrib>Saito, Motonobu</creatorcontrib><creatorcontrib>Tsuta, Koji</creatorcontrib><creatorcontrib>Iwakawa, Reika</creatorcontrib><creatorcontrib>Shiraishi, Kouya</creatorcontrib><creatorcontrib>Scheel, Andreas H</creatorcontrib><creatorcontrib>Uchida, Shinsuke</creatorcontrib><creatorcontrib>Watanabe, Shun-Ichi</creatorcontrib><creatorcontrib>Nishikawa, Ryo</creatorcontrib><creatorcontrib>Noguchi, Masayuki</creatorcontrib><creatorcontrib>Peifer, Martin</creatorcontrib><creatorcontrib>Jang, Se Jin</creatorcontrib><creatorcontrib>Petersen, Iver</creatorcontrib><creatorcontrib>Büttner, Reinhard</creatorcontrib><creatorcontrib>Harris, Curtis C</creatorcontrib><creatorcontrib>Yokota, Jun</creatorcontrib><creatorcontrib>Thomas, Roman K</creatorcontrib><creatorcontrib>Kohno, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Julie</au><au>Saito, Motonobu</au><au>Tsuta, Koji</au><au>Iwakawa, Reika</au><au>Shiraishi, Kouya</au><au>Scheel, Andreas H</au><au>Uchida, Shinsuke</au><au>Watanabe, Shun-Ichi</au><au>Nishikawa, Ryo</au><au>Noguchi, Masayuki</au><au>Peifer, Martin</au><au>Jang, Se Jin</au><au>Petersen, Iver</au><au>Büttner, Reinhard</au><au>Harris, Curtis C</au><au>Yokota, Jun</au><au>Thomas, Roman K</au><au>Kohno, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>23</volume><issue>5</issue><spage>1220</spage><epage>1226</epage><pages>1220-1226</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Programmed death ligand-1 (PD-L1), encoded by the gene, is a target for immune checkpoint blockade; however, little is known about genomic alterations. A subset of small-cell lung cancer (SCLC) exhibits increased copy number of chromosome 9p24, on which resides; however, most SCLCs show low expression of PD-L1. We therefore examined whether is a target of recurrent genomic alterations. We examined somatic copy number alterations in two patient cohorts by quantitative real-time PCR in 72 human SCLC cases (cohort 1) and SNP array analysis in 138 human SCLC cases (cohort 2). Whole-genome sequencing revealed the detailed genomic structure underlying focal amplification. PD-L1 expression in amplified cases from cohorts 1 and 2 was further examined by transcriptome sequencing and immunohistochemical (IHC) staining. By examining somatic copy number alterations in two cohorts of primary human SCLC specimens, we observed 9p24 copy number gains (where resides) and focal, high-level amplification of We found evidence for genomic targeting of , suggesting selection during oncogenic transformation. amplification was caused by genomic rearrangements not affecting the open reading frame, thus leading to massively increased transcripts and high level expression of PD-L1. A subset (4/210, 1.9%) of human SCLC patient cases exhibits massive expression of PD-L1 caused by focal amplification of Such tumors may be particularly susceptible to immune checkpoint blockade. .</abstract><cop>United States</cop><pub>American Association for Cancer Research Inc</pub><pmid>27620277</pmid><doi>10.1158/1078-0432.ccr-16-1069</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2017-03, Vol.23 (5), p.1220-1226
issn 1078-0432
1557-3265
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6329376
source Freely Accessible Science Journals
subjects Aged
Aged, 80 and over
Amplification
Apoptosis
B7-H1 Antigen - genetics
Biomarkers, Tumor - genetics
Cancer
Chromosome 9
Chromosomes, Human, Pair 9 - genetics
Copy number
DNA Copy Number Variations - genetics
Experimental design
Female
Gene Amplification - genetics
Gene expression
Gene Expression Regulation, Neoplastic
Gene sequencing
Genetic transformation
Genome, Human
Genomes
Humans
Immune checkpoint
Leukemia, Lymphocytic, Chronic, B-Cell - genetics
Leukemia, Lymphocytic, Chronic, B-Cell - pathology
Levels
Lung cancer
Male
Middle Aged
PD-L1 protein
Polymorphism, Single Nucleotide
Single-nucleotide polymorphism
Small cell lung carcinoma
Tumors
title Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20Amplification%20of%20CD274%20(PD-L1)%20in%20Small-Cell%20Lung%20Cancer&rft.jtitle=Clinical%20cancer%20research&rft.au=George,%20Julie&rft.date=2017-03-01&rft.volume=23&rft.issue=5&rft.spage=1220&rft.epage=1226&rft.pages=1220-1226&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.ccr-16-1069&rft_dat=%3Cproquest_pubme%3E1859734414%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c538t-b51b55c1297a51e7832c0cc1ee71dac16eaf40bf86f7e8550149c7175ec8e2d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1983421554&rft_id=info:pmid/27620277&rfr_iscdi=true