Loading…

Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea

Methane in the seabed is mostly oxidized to CO 2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate–methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of me...

Full description

Saved in:
Bibliographic Details
Published in:The ISME Journal 2019-02, Vol.13 (2), p.250-262
Main Authors: Beulig, F., Røy, H., McGlynn, S. E., Jørgensen, B. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-88521acdd98007fee0f406475e62ad7805b9952155c7186fed7e8a1dc0cf32923
cites cdi_FETCH-LOGICAL-c443t-88521acdd98007fee0f406475e62ad7805b9952155c7186fed7e8a1dc0cf32923
container_end_page 262
container_issue 2
container_start_page 250
container_title The ISME Journal
container_volume 13
creator Beulig, F.
Røy, H.
McGlynn, S. E.
Jørgensen, B. B.
description Methane in the seabed is mostly oxidized to CO 2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate–methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of methane. Across multiple sites in the Baltic Sea, we identified a systematic discrepancy between the opposing fluxes, such that more sulfate was consumed than expected from the 1:1 stoichiometry of methane oxidation with sulfate. The flux discrepancy was consistent with an oxidation of buried organic matter within the SMT, as corroborated by stable carbon isotope budgets. Detailed radiotracer experiments showed that up to 60% of the organic matter oxidation within the SMT first produced methane, which was concurrently oxidized to CO 2 by sulfate reduction. This previously unrecognized “cryptic” methane cycling in the SMT is not discernible from geochemical profiles due to overall net methane consumption. Sedimentary gene pools suggested that nearly all potential methanogens within and beneath the SMT belonged to ANME-1 archaea, which are typically associated with anaerobic methane oxidation. Analysis of a metagenome-assembled genome suggests that predominant ANME-1 do indeed have the enzymatic potential to catalyze both methane production and consumption.
doi_str_mv 10.1038/s41396-018-0273-z
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6331549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101269025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-88521acdd98007fee0f406475e62ad7805b9952155c7186fed7e8a1dc0cf32923</originalsourceid><addsrcrecordid>eNp1kc9qFTEYxYMotlYfwF3AjZvRL_8nG6FcaitU3eg65GYy96bMZKZJRpiufAffsE9iLrdUFFzl48vvHE5yEHpN4B0B1r7PnDAtGyBtA1Sx5u4JOiVKkEYxBU8fZ0lP0IucbwCEklI9RycMiOac6lN0u0nrXILDmyuO3eqGEHc4RFz2Hudl6G3x9z9_jb7sbfS4JBtzKGGKeOrxaFOoy-y7MPpYMrbzbFOdhhWPdVm1Hd6u-PzL54uGYJvc3nr7Ej3r7ZD9q4fzDH3_ePFtc9Vcf738tDm_bhznrDRtKyixrut0C6B676HnILkSXlLbqRbEVuuKCOEUaWXvO-VbSzoHrmdUU3aGPhx952Vb07iaK9nBzCnU3KuZbDB_38SwN7vph5GMEcF1NXj7YJCm28XnYsaQnR-G-hPTkg0lQKjUQEVF3_yD3kxLivV5lZIKKOHiYEiOlEtTzsn3j2EImEOh5lioqYWaQ6HmrmroUZMrG3c-_XH-v-g3m5-j9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167021459</pqid></control><display><type>article</type><title>Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea</title><source>Oxford Journals Open Access Collection</source><source>Springer Nature</source><source>PubMed Central</source><creator>Beulig, F. ; Røy, H. ; McGlynn, S. E. ; Jørgensen, B. B.</creator><creatorcontrib>Beulig, F. ; Røy, H. ; McGlynn, S. E. ; Jørgensen, B. B.</creatorcontrib><description>Methane in the seabed is mostly oxidized to CO 2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate–methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of methane. Across multiple sites in the Baltic Sea, we identified a systematic discrepancy between the opposing fluxes, such that more sulfate was consumed than expected from the 1:1 stoichiometry of methane oxidation with sulfate. The flux discrepancy was consistent with an oxidation of buried organic matter within the SMT, as corroborated by stable carbon isotope budgets. Detailed radiotracer experiments showed that up to 60% of the organic matter oxidation within the SMT first produced methane, which was concurrently oxidized to CO 2 by sulfate reduction. This previously unrecognized “cryptic” methane cycling in the SMT is not discernible from geochemical profiles due to overall net methane consumption. Sedimentary gene pools suggested that nearly all potential methanogens within and beneath the SMT belonged to ANME-1 archaea, which are typically associated with anaerobic methane oxidation. Analysis of a metagenome-assembled genome suggests that predominant ANME-1 do indeed have the enzymatic potential to catalyze both methane production and consumption.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-018-0273-z</identifier><identifier>PMID: 30194429</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/22 ; 45/77 ; 631/326/47 ; 704/172 ; Archaea ; Biomedical and Life Sciences ; Carbon dioxide ; Carbon isotopes ; Cycles ; Ecology ; Evolutionary Biology ; Fluctuations ; Fluxes ; Genomes ; Life Sciences ; Marine sediments ; Methane ; Methanogenic bacteria ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Ocean floor ; Organic matter ; Oxidation ; Oxidizing agents ; Radioactive tracers ; Sediments ; Stoichiometry ; Sulfate reduction ; Sulfates ; Water column</subject><ispartof>The ISME Journal, 2019-02, Vol.13 (2), p.250-262</ispartof><rights>International Society for Microbial Ecology 2018</rights><rights>Copyright Nature Publishing Group Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-88521acdd98007fee0f406475e62ad7805b9952155c7186fed7e8a1dc0cf32923</citedby><cites>FETCH-LOGICAL-c443t-88521acdd98007fee0f406475e62ad7805b9952155c7186fed7e8a1dc0cf32923</cites><orcidid>0000-0002-8199-7011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331549/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331549/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Beulig, F.</creatorcontrib><creatorcontrib>Røy, H.</creatorcontrib><creatorcontrib>McGlynn, S. E.</creatorcontrib><creatorcontrib>Jørgensen, B. B.</creatorcontrib><title>Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><description>Methane in the seabed is mostly oxidized to CO 2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate–methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of methane. Across multiple sites in the Baltic Sea, we identified a systematic discrepancy between the opposing fluxes, such that more sulfate was consumed than expected from the 1:1 stoichiometry of methane oxidation with sulfate. The flux discrepancy was consistent with an oxidation of buried organic matter within the SMT, as corroborated by stable carbon isotope budgets. Detailed radiotracer experiments showed that up to 60% of the organic matter oxidation within the SMT first produced methane, which was concurrently oxidized to CO 2 by sulfate reduction. This previously unrecognized “cryptic” methane cycling in the SMT is not discernible from geochemical profiles due to overall net methane consumption. Sedimentary gene pools suggested that nearly all potential methanogens within and beneath the SMT belonged to ANME-1 archaea, which are typically associated with anaerobic methane oxidation. Analysis of a metagenome-assembled genome suggests that predominant ANME-1 do indeed have the enzymatic potential to catalyze both methane production and consumption.</description><subject>45/22</subject><subject>45/77</subject><subject>631/326/47</subject><subject>704/172</subject><subject>Archaea</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbon isotopes</subject><subject>Cycles</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Marine sediments</subject><subject>Methane</subject><subject>Methanogenic bacteria</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Ocean floor</subject><subject>Organic matter</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Radioactive tracers</subject><subject>Sediments</subject><subject>Stoichiometry</subject><subject>Sulfate reduction</subject><subject>Sulfates</subject><subject>Water column</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9qFTEYxYMotlYfwF3AjZvRL_8nG6FcaitU3eg65GYy96bMZKZJRpiufAffsE9iLrdUFFzl48vvHE5yEHpN4B0B1r7PnDAtGyBtA1Sx5u4JOiVKkEYxBU8fZ0lP0IucbwCEklI9RycMiOac6lN0u0nrXILDmyuO3eqGEHc4RFz2Hudl6G3x9z9_jb7sbfS4JBtzKGGKeOrxaFOoy-y7MPpYMrbzbFOdhhWPdVm1Hd6u-PzL54uGYJvc3nr7Ej3r7ZD9q4fzDH3_ePFtc9Vcf738tDm_bhznrDRtKyixrut0C6B676HnILkSXlLbqRbEVuuKCOEUaWXvO-VbSzoHrmdUU3aGPhx952Vb07iaK9nBzCnU3KuZbDB_38SwN7vph5GMEcF1NXj7YJCm28XnYsaQnR-G-hPTkg0lQKjUQEVF3_yD3kxLivV5lZIKKOHiYEiOlEtTzsn3j2EImEOh5lioqYWaQ6HmrmroUZMrG3c-_XH-v-g3m5-j9A</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Beulig, F.</creator><creator>Røy, H.</creator><creator>McGlynn, S. E.</creator><creator>Jørgensen, B. B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8199-7011</orcidid></search><sort><creationdate>20190201</creationdate><title>Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea</title><author>Beulig, F. ; Røy, H. ; McGlynn, S. E. ; Jørgensen, B. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-88521acdd98007fee0f406475e62ad7805b9952155c7186fed7e8a1dc0cf32923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45/22</topic><topic>45/77</topic><topic>631/326/47</topic><topic>704/172</topic><topic>Archaea</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbon isotopes</topic><topic>Cycles</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Marine sediments</topic><topic>Methane</topic><topic>Methanogenic bacteria</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Ocean floor</topic><topic>Organic matter</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Radioactive tracers</topic><topic>Sediments</topic><topic>Stoichiometry</topic><topic>Sulfate reduction</topic><topic>Sulfates</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beulig, F.</creatorcontrib><creatorcontrib>Røy, H.</creatorcontrib><creatorcontrib>McGlynn, S. E.</creatorcontrib><creatorcontrib>Jørgensen, B. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beulig, F.</au><au>Røy, H.</au><au>McGlynn, S. E.</au><au>Jørgensen, B. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>250</spage><epage>262</epage><pages>250-262</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Methane in the seabed is mostly oxidized to CO 2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate–methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of methane. Across multiple sites in the Baltic Sea, we identified a systematic discrepancy between the opposing fluxes, such that more sulfate was consumed than expected from the 1:1 stoichiometry of methane oxidation with sulfate. The flux discrepancy was consistent with an oxidation of buried organic matter within the SMT, as corroborated by stable carbon isotope budgets. Detailed radiotracer experiments showed that up to 60% of the organic matter oxidation within the SMT first produced methane, which was concurrently oxidized to CO 2 by sulfate reduction. This previously unrecognized “cryptic” methane cycling in the SMT is not discernible from geochemical profiles due to overall net methane consumption. Sedimentary gene pools suggested that nearly all potential methanogens within and beneath the SMT belonged to ANME-1 archaea, which are typically associated with anaerobic methane oxidation. Analysis of a metagenome-assembled genome suggests that predominant ANME-1 do indeed have the enzymatic potential to catalyze both methane production and consumption.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30194429</pmid><doi>10.1038/s41396-018-0273-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8199-7011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2019-02, Vol.13 (2), p.250-262
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6331549
source Oxford Journals Open Access Collection; Springer Nature; PubMed Central
subjects 45/22
45/77
631/326/47
704/172
Archaea
Biomedical and Life Sciences
Carbon dioxide
Carbon isotopes
Cycles
Ecology
Evolutionary Biology
Fluctuations
Fluxes
Genomes
Life Sciences
Marine sediments
Methane
Methanogenic bacteria
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microorganisms
Ocean floor
Organic matter
Oxidation
Oxidizing agents
Radioactive tracers
Sediments
Stoichiometry
Sulfate reduction
Sulfates
Water column
title Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryptic%20CH4%20cycling%20in%20the%20sulfate%E2%80%93methane%20transition%20of%20marine%20sediments%20apparently%20mediated%20by%20ANME-1%20archaea&rft.jtitle=The%20ISME%20Journal&rft.au=Beulig,%20F.&rft.date=2019-02-01&rft.volume=13&rft.issue=2&rft.spage=250&rft.epage=262&rft.pages=250-262&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-018-0273-z&rft_dat=%3Cproquest_pubme%3E2101269025%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-88521acdd98007fee0f406475e62ad7805b9952155c7186fed7e8a1dc0cf32923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2167021459&rft_id=info:pmid/30194429&rfr_iscdi=true