Loading…

Analysis of potential strategies for cadmium stress tolerance revealed by transcriptome analysis of upland cotton

In recent years, heavy metal pollution has become a more serious global problem, and all countries are actively engaged in finding methods to remediate heavy metal-contaminated soil. We conducted transcriptome sequencing of the roots of cotton grown under three different cadmium concentrations, and...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-01, Vol.9 (1), p.86, Article 86
Main Authors: Chen, Haodong, Li, Yujun, Ma, Xiongfeng, Guo, Lishuang, He, Yunxin, Ren, Zhongying, Kuang, Zhengcheng, Zhang, Xiling, Zhang, Zhigang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, heavy metal pollution has become a more serious global problem, and all countries are actively engaged in finding methods to remediate heavy metal-contaminated soil. We conducted transcriptome sequencing of the roots of cotton grown under three different cadmium concentrations, and analysed the potential strategies for coping with cadmium stress. Through Gene Ontology analysis, we found that most of the genes differentially regulated under cadmium stress were associated with catalytic activity and binding action, especially metal iron binding, and specific metabolic and cellular processes. The genes responsive to cadmium stress were mainly related to membrane and response to stimulus. The KEGG pathways enriched differentially expressed genes were associated with secondary metabolite production, Starch and sucrose metabolism, flavonoid biosynthesis, phenylalanina metalism and biosynthesis, in order to improve the activity of antioxidant system, repair systems and transport system and reduction of cadmium toxicity. There are three main mechanisms by which cotton responds to cadmium stress: thickening of physical barriers, oxidation resistance and detoxification complexation. Meanwhile, identified a potential cotton-specific stress response pathway involving brassinolide, and ethylene signaling pathways. Further investigation is needed to define the specific molecular mechanisms underlying cotton tolerance to cadmium stress. In this study potential coping strategies of cotton root under cadmium stress were revealed. Our findings can guide the selection of cotton breeds that absorb high levels of cadmium.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-36228-z