Loading…
A High-Resolution Opto-Electrophysiology System With a Miniature Integrated Headstage
This work presents a fully integrated neural interface system in a small form factor (1.9 g), consisting of a μLED silicon optoelectrode (12 μLEDs and 32 recording sites in a 4-shank configuration), an Intan 32-channel recording chip, and a custom optical stimulation chip for controlling 12 μLEDs. H...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2018-10, Vol.12 (5), p.1065-1075 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents a fully integrated neural interface system in a small form factor (1.9 g), consisting of a μLED silicon optoelectrode (12 μLEDs and 32 recording sites in a 4-shank configuration), an Intan 32-channel recording chip, and a custom optical stimulation chip for controlling 12 μLEDs. High-resolution optical stimulation with approximately 68.5 nW radiant flux resolution is achieved by a custom LED driver ASIC, which enables individual control of up to 48 channels with a current precision of 1 μA, a maximum current of 1.024 mA, and an update rate of >10 kHz. Recording is performed by an off-the-shelf 32-channel digitizing front-end ASIC from Intan. Two compact custom interface printed circuit boards were designed to link the headstage with a PC. The prototype system demonstrates precise current generation, sufficient optical radiant flux generation (Φ e > 0.16 μW), and fast turn-ON of μLEDs ( t rise |
---|---|
ISSN: | 1932-4545 1940-9990 1940-9990 |
DOI: | 10.1109/TBCAS.2018.2852267 |