Loading…
The bacterial lipid II flippase MurJ functions by an alternating-access mechanism
The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be target...
Saved in:
Published in: | The Journal of biological chemistry 2019-01, Vol.294 (3), p.981-990 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03 |
container_end_page | 990 |
container_issue | 3 |
container_start_page | 981 |
container_title | The Journal of biological chemistry |
container_volume | 294 |
creator | Kumar, Sujeet Rubino, Frederick A. Mendoza, Alicia G. Ruiz, Natividad |
description | The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo. Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle. |
doi_str_mv | 10.1074/jbc.RA118.006099 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820400328</els_id><sourcerecordid>2138645690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtRCILgt3TshHLlns-CMJB6SqKrCoVQVqpd6syWTSdZU4i51U6r_HZUsFB-YyI82bN2_mMfZWio0Ulf5w2-Lmx7GU9UYIK5rmGVtJUatCGXn9nK2EKGXRlKY-Yq9SuhU5dCNfsiMldF3WWqzY98sd8RZwpuhh4IPf-45vt7zP1R4S8fMlfuP9EnD2U0i8vecQOAwZH2D24aYAREqJj4Q7CD6Nr9mLHoZEbx7zml19Pr08-VqcXXzZnhyfFWikmgtTZ8WgykaqWjSqbbXVaFqQAMKitB1WleqlNRbKrq5AG9N3skLV5YMAhVqzTwfe_dKO1CGFOcLg9tGPEO_dBN792wl-526mO2eVliqTr9n7R4I4_VwozW70CWkYINC0JFdmZVYb2zzsEgcoximlSP3TGincgxMuO-F-O-EOTuSRd3_Lexr48_oM-HgAUH7SnafoEnoKSJ2PhLPrJv9_9l_MFJi5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138645690</pqid></control><display><type>article</type><title>The bacterial lipid II flippase MurJ functions by an alternating-access mechanism</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Kumar, Sujeet ; Rubino, Frederick A. ; Mendoza, Alicia G. ; Ruiz, Natividad</creator><creatorcontrib>Kumar, Sujeet ; Rubino, Frederick A. ; Mendoza, Alicia G. ; Ruiz, Natividad</creatorcontrib><description>The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo. Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.006099</identifier><identifier>PMID: 30482840</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>antibacterial target ; Biological Transport, Active - physiology ; cell wall ; conformational dynamics ; cysteine-mediated cross-linking ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; glycolipid ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; lipid II ; Lipid Metabolism - physiology ; Membrane Biology ; membrane transport ; MOP exporter ; peptidoglycan ; Phospholipid Transfer Proteins - chemistry ; Phospholipid Transfer Proteins - genetics ; Phospholipid Transfer Proteins - metabolism ; Protein Domains ; Protein Structure, Secondary</subject><ispartof>The Journal of biological chemistry, 2019-01, Vol.294 (3), p.981-990</ispartof><rights>2019 © 2019 Kumar et al.</rights><rights>2019 Kumar et al.</rights><rights>2019 Kumar et al. 2019 Kumar et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03</citedby><cites>FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03</cites><orcidid>0000-0002-6369-2206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341377/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820400328$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30482840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Sujeet</creatorcontrib><creatorcontrib>Rubino, Frederick A.</creatorcontrib><creatorcontrib>Mendoza, Alicia G.</creatorcontrib><creatorcontrib>Ruiz, Natividad</creatorcontrib><title>The bacterial lipid II flippase MurJ functions by an alternating-access mechanism</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo. Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.</description><subject>antibacterial target</subject><subject>Biological Transport, Active - physiology</subject><subject>cell wall</subject><subject>conformational dynamics</subject><subject>cysteine-mediated cross-linking</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>glycolipid</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>lipid II</subject><subject>Lipid Metabolism - physiology</subject><subject>Membrane Biology</subject><subject>membrane transport</subject><subject>MOP exporter</subject><subject>peptidoglycan</subject><subject>Phospholipid Transfer Proteins - chemistry</subject><subject>Phospholipid Transfer Proteins - genetics</subject><subject>Phospholipid Transfer Proteins - metabolism</subject><subject>Protein Domains</subject><subject>Protein Structure, Secondary</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UU1v1DAQtRCILgt3TshHLlns-CMJB6SqKrCoVQVqpd6syWTSdZU4i51U6r_HZUsFB-YyI82bN2_mMfZWio0Ulf5w2-Lmx7GU9UYIK5rmGVtJUatCGXn9nK2EKGXRlKY-Yq9SuhU5dCNfsiMldF3WWqzY98sd8RZwpuhh4IPf-45vt7zP1R4S8fMlfuP9EnD2U0i8vecQOAwZH2D24aYAREqJj4Q7CD6Nr9mLHoZEbx7zml19Pr08-VqcXXzZnhyfFWikmgtTZ8WgykaqWjSqbbXVaFqQAMKitB1WleqlNRbKrq5AG9N3skLV5YMAhVqzTwfe_dKO1CGFOcLg9tGPEO_dBN792wl-526mO2eVliqTr9n7R4I4_VwozW70CWkYINC0JFdmZVYb2zzsEgcoximlSP3TGincgxMuO-F-O-EOTuSRd3_Lexr48_oM-HgAUH7SnafoEnoKSJ2PhLPrJv9_9l_MFJi5</recordid><startdate>20190118</startdate><enddate>20190118</enddate><creator>Kumar, Sujeet</creator><creator>Rubino, Frederick A.</creator><creator>Mendoza, Alicia G.</creator><creator>Ruiz, Natividad</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6369-2206</orcidid></search><sort><creationdate>20190118</creationdate><title>The bacterial lipid II flippase MurJ functions by an alternating-access mechanism</title><author>Kumar, Sujeet ; Rubino, Frederick A. ; Mendoza, Alicia G. ; Ruiz, Natividad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>antibacterial target</topic><topic>Biological Transport, Active - physiology</topic><topic>cell wall</topic><topic>conformational dynamics</topic><topic>cysteine-mediated cross-linking</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>glycolipid</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>lipid II</topic><topic>Lipid Metabolism - physiology</topic><topic>Membrane Biology</topic><topic>membrane transport</topic><topic>MOP exporter</topic><topic>peptidoglycan</topic><topic>Phospholipid Transfer Proteins - chemistry</topic><topic>Phospholipid Transfer Proteins - genetics</topic><topic>Phospholipid Transfer Proteins - metabolism</topic><topic>Protein Domains</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sujeet</creatorcontrib><creatorcontrib>Rubino, Frederick A.</creatorcontrib><creatorcontrib>Mendoza, Alicia G.</creatorcontrib><creatorcontrib>Ruiz, Natividad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sujeet</au><au>Rubino, Frederick A.</au><au>Mendoza, Alicia G.</au><au>Ruiz, Natividad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The bacterial lipid II flippase MurJ functions by an alternating-access mechanism</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-01-18</date><risdate>2019</risdate><volume>294</volume><issue>3</issue><spage>981</spage><epage>990</epage><pages>981-990</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo. Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30482840</pmid><doi>10.1074/jbc.RA118.006099</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6369-2206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2019-01, Vol.294 (3), p.981-990 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341377 |
source | Open Access: PubMed Central; ScienceDirect Journals |
subjects | antibacterial target Biological Transport, Active - physiology cell wall conformational dynamics cysteine-mediated cross-linking Escherichia coli - chemistry Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism glycolipid Lipid Bilayers - chemistry Lipid Bilayers - metabolism lipid II Lipid Metabolism - physiology Membrane Biology membrane transport MOP exporter peptidoglycan Phospholipid Transfer Proteins - chemistry Phospholipid Transfer Proteins - genetics Phospholipid Transfer Proteins - metabolism Protein Domains Protein Structure, Secondary |
title | The bacterial lipid II flippase MurJ functions by an alternating-access mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20bacterial%20lipid%20II%20flippase%20MurJ%20functions%20by%20an%20alternating-access%20mechanism&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kumar,%20Sujeet&rft.date=2019-01-18&rft.volume=294&rft.issue=3&rft.spage=981&rft.epage=990&rft.pages=981-990&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.006099&rft_dat=%3Cproquest_pubme%3E2138645690%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2138645690&rft_id=info:pmid/30482840&rfr_iscdi=true |