Loading…

The bacterial lipid II flippase MurJ functions by an alternating-access mechanism

The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be target...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2019-01, Vol.294 (3), p.981-990
Main Authors: Kumar, Sujeet, Rubino, Frederick A., Mendoza, Alicia G., Ruiz, Natividad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03
cites cdi_FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03
container_end_page 990
container_issue 3
container_start_page 981
container_title The Journal of biological chemistry
container_volume 294
creator Kumar, Sujeet
Rubino, Frederick A.
Mendoza, Alicia G.
Ruiz, Natividad
description The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo. Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.
doi_str_mv 10.1074/jbc.RA118.006099
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820400328</els_id><sourcerecordid>2138645690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtRCILgt3TshHLlns-CMJB6SqKrCoVQVqpd6syWTSdZU4i51U6r_HZUsFB-YyI82bN2_mMfZWio0Ulf5w2-Lmx7GU9UYIK5rmGVtJUatCGXn9nK2EKGXRlKY-Yq9SuhU5dCNfsiMldF3WWqzY98sd8RZwpuhh4IPf-45vt7zP1R4S8fMlfuP9EnD2U0i8vecQOAwZH2D24aYAREqJj4Q7CD6Nr9mLHoZEbx7zml19Pr08-VqcXXzZnhyfFWikmgtTZ8WgykaqWjSqbbXVaFqQAMKitB1WleqlNRbKrq5AG9N3skLV5YMAhVqzTwfe_dKO1CGFOcLg9tGPEO_dBN792wl-526mO2eVliqTr9n7R4I4_VwozW70CWkYINC0JFdmZVYb2zzsEgcoximlSP3TGincgxMuO-F-O-EOTuSRd3_Lexr48_oM-HgAUH7SnafoEnoKSJ2PhLPrJv9_9l_MFJi5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138645690</pqid></control><display><type>article</type><title>The bacterial lipid II flippase MurJ functions by an alternating-access mechanism</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Kumar, Sujeet ; Rubino, Frederick A. ; Mendoza, Alicia G. ; Ruiz, Natividad</creator><creatorcontrib>Kumar, Sujeet ; Rubino, Frederick A. ; Mendoza, Alicia G. ; Ruiz, Natividad</creatorcontrib><description>The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo. Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.006099</identifier><identifier>PMID: 30482840</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>antibacterial target ; Biological Transport, Active - physiology ; cell wall ; conformational dynamics ; cysteine-mediated cross-linking ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; glycolipid ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; lipid II ; Lipid Metabolism - physiology ; Membrane Biology ; membrane transport ; MOP exporter ; peptidoglycan ; Phospholipid Transfer Proteins - chemistry ; Phospholipid Transfer Proteins - genetics ; Phospholipid Transfer Proteins - metabolism ; Protein Domains ; Protein Structure, Secondary</subject><ispartof>The Journal of biological chemistry, 2019-01, Vol.294 (3), p.981-990</ispartof><rights>2019 © 2019 Kumar et al.</rights><rights>2019 Kumar et al.</rights><rights>2019 Kumar et al. 2019 Kumar et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03</citedby><cites>FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03</cites><orcidid>0000-0002-6369-2206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341377/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820400328$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30482840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Sujeet</creatorcontrib><creatorcontrib>Rubino, Frederick A.</creatorcontrib><creatorcontrib>Mendoza, Alicia G.</creatorcontrib><creatorcontrib>Ruiz, Natividad</creatorcontrib><title>The bacterial lipid II flippase MurJ functions by an alternating-access mechanism</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo. Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.</description><subject>antibacterial target</subject><subject>Biological Transport, Active - physiology</subject><subject>cell wall</subject><subject>conformational dynamics</subject><subject>cysteine-mediated cross-linking</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>glycolipid</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>lipid II</subject><subject>Lipid Metabolism - physiology</subject><subject>Membrane Biology</subject><subject>membrane transport</subject><subject>MOP exporter</subject><subject>peptidoglycan</subject><subject>Phospholipid Transfer Proteins - chemistry</subject><subject>Phospholipid Transfer Proteins - genetics</subject><subject>Phospholipid Transfer Proteins - metabolism</subject><subject>Protein Domains</subject><subject>Protein Structure, Secondary</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UU1v1DAQtRCILgt3TshHLlns-CMJB6SqKrCoVQVqpd6syWTSdZU4i51U6r_HZUsFB-YyI82bN2_mMfZWio0Ulf5w2-Lmx7GU9UYIK5rmGVtJUatCGXn9nK2EKGXRlKY-Yq9SuhU5dCNfsiMldF3WWqzY98sd8RZwpuhh4IPf-45vt7zP1R4S8fMlfuP9EnD2U0i8vecQOAwZH2D24aYAREqJj4Q7CD6Nr9mLHoZEbx7zml19Pr08-VqcXXzZnhyfFWikmgtTZ8WgykaqWjSqbbXVaFqQAMKitB1WleqlNRbKrq5AG9N3skLV5YMAhVqzTwfe_dKO1CGFOcLg9tGPEO_dBN792wl-526mO2eVliqTr9n7R4I4_VwozW70CWkYINC0JFdmZVYb2zzsEgcoximlSP3TGincgxMuO-F-O-EOTuSRd3_Lexr48_oM-HgAUH7SnafoEnoKSJ2PhLPrJv9_9l_MFJi5</recordid><startdate>20190118</startdate><enddate>20190118</enddate><creator>Kumar, Sujeet</creator><creator>Rubino, Frederick A.</creator><creator>Mendoza, Alicia G.</creator><creator>Ruiz, Natividad</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6369-2206</orcidid></search><sort><creationdate>20190118</creationdate><title>The bacterial lipid II flippase MurJ functions by an alternating-access mechanism</title><author>Kumar, Sujeet ; Rubino, Frederick A. ; Mendoza, Alicia G. ; Ruiz, Natividad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>antibacterial target</topic><topic>Biological Transport, Active - physiology</topic><topic>cell wall</topic><topic>conformational dynamics</topic><topic>cysteine-mediated cross-linking</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>glycolipid</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>lipid II</topic><topic>Lipid Metabolism - physiology</topic><topic>Membrane Biology</topic><topic>membrane transport</topic><topic>MOP exporter</topic><topic>peptidoglycan</topic><topic>Phospholipid Transfer Proteins - chemistry</topic><topic>Phospholipid Transfer Proteins - genetics</topic><topic>Phospholipid Transfer Proteins - metabolism</topic><topic>Protein Domains</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sujeet</creatorcontrib><creatorcontrib>Rubino, Frederick A.</creatorcontrib><creatorcontrib>Mendoza, Alicia G.</creatorcontrib><creatorcontrib>Ruiz, Natividad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sujeet</au><au>Rubino, Frederick A.</au><au>Mendoza, Alicia G.</au><au>Ruiz, Natividad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The bacterial lipid II flippase MurJ functions by an alternating-access mechanism</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-01-18</date><risdate>2019</risdate><volume>294</volume><issue>3</issue><spage>981</spage><epage>990</epage><pages>981-990</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo. Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30482840</pmid><doi>10.1074/jbc.RA118.006099</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6369-2206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2019-01, Vol.294 (3), p.981-990
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341377
source Open Access: PubMed Central; ScienceDirect Journals
subjects antibacterial target
Biological Transport, Active - physiology
cell wall
conformational dynamics
cysteine-mediated cross-linking
Escherichia coli - chemistry
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
glycolipid
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
lipid II
Lipid Metabolism - physiology
Membrane Biology
membrane transport
MOP exporter
peptidoglycan
Phospholipid Transfer Proteins - chemistry
Phospholipid Transfer Proteins - genetics
Phospholipid Transfer Proteins - metabolism
Protein Domains
Protein Structure, Secondary
title The bacterial lipid II flippase MurJ functions by an alternating-access mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20bacterial%20lipid%20II%20flippase%20MurJ%20functions%20by%20an%20alternating-access%20mechanism&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kumar,%20Sujeet&rft.date=2019-01-18&rft.volume=294&rft.issue=3&rft.spage=981&rft.epage=990&rft.pages=981-990&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.006099&rft_dat=%3Cproquest_pubme%3E2138645690%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-58060a329138093bb464c5ba1aa06c16dc773f1656a2d87a455fd17c3d925ac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2138645690&rft_id=info:pmid/30482840&rfr_iscdi=true