Loading…

Experimental examination of pollinator-mediated selection in a sexually deceptive orchid

Abstract Background and Aims Selection exerted by pollinators on flowers is predicted to occur along two distinct axes. While pollinator attraction to flowers is governed by pollinator preferences, pollen transfer efficiency is mediated by the mechanical fit of pollinators to flower morphology. Alth...

Full description

Saved in:
Bibliographic Details
Published in:Annals of botany 2019-01, Vol.123 (2), p.347-354
Main Authors: de Jager, Marinus L, Peakall, Rod
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background and Aims Selection exerted by pollinators on flowers is predicted to occur along two distinct axes. While pollinator attraction to flowers is governed by pollinator preferences, pollen transfer efficiency is mediated by the mechanical fit of pollinators to flower morphology. Although pollinator attraction in sexually deceptive orchids is typically underpinned by floral odour, morphological traits are expected to play a vital role in mechanical fit during floral contact with pollinators. Methods Here we utilize a comprehensive and novel procedure to test for pollinator-mediated selection through mechanical fit with the flower labellum in the orchid Chiloglottis trapeziformis. This approach combines detailed pollinator observations related to plant reproductive fitness with complementary experimental manipulation and phenotypic selection analysis. Key Results Experiments with virgin flowers revealed that pollen removal occurs only during vigorous pseudocopulation. This behaviour involves male wasps that grasp the insectiform callus structure on the labellum while probing the labellum tip in a forward orientation. Both orientation and duration of pseudocopulation were significant predictors of pollen removal, confirming a direct relationship between pollinator behaviour and plant fitness. Controlled floral manipulation that either shortened or elongated the distance between the callus and the labellum tip detected no change in pollinator attraction. The duration of pseudocopulation, however, was significantly reduced on flowers with shortened or elongated callus–tip distances, consistent with stabilizing selection. Phenotypic selection analysis confirmed this prediction in natural populations by uncovering evidence for stabilizing selection on the distance between the callus and the labellum tip. Conclusions Our experimental manipulations and selection analysis in natural populations thus demonstrate stabilizing selection on the distance from the callus to the labellum tip, and illustrate the utility of employing multiple approaches to confirm selection exerted by pollinators on floral form.
ISSN:0305-7364
1095-8290
DOI:10.1093/aob/mcy083