Loading…

A grading system that predicts the risk of dialysis induction in IgA nephropathy patients based on the combination of the clinical and histological severity

Histological classification is essential in the clinical management of immunoglobulin A nephropathy (IgAN). However, there are limitations in predicting the prognosis of IgAN based on histological information alone, which suggests the need for better prognostic models. Therefore, we defined a progno...

Full description

Saved in:
Bibliographic Details
Published in:Clinical and experimental nephrology 2019-01, Vol.23 (1), p.16-25
Main Authors: Okonogi, Hideo, Kawamura, Tetsuya, Joh, Kensuke, Koike, Kentaro, Miyazaki, Yoichi, Ogura, Makoto, Tsuboi, Nobuo, Hirano, Keita, Matsushima, Masato, Yokoo, Takashi, Horikoshi, Satoshi, Suzuki, Yusuke, Yasuda, Takashi, Shirai, Sayuri, Shibata, Takanori, Hattori, Motoshi, Akioka, Yuko, Katafuchi, Ritsuko, Hashiguchi, Akinori, Hisano, Satoshi, Shimizu, Akira, Kimura, Kenjiro, Maruyama, Shoichi, Matsuo, Seiichi, Tomino, Yasuhiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c549t-cb7994c355e070b611e341c0e780b707a51730055619b72eed7d60ce31579e4b3
cites cdi_FETCH-LOGICAL-c549t-cb7994c355e070b611e341c0e780b707a51730055619b72eed7d60ce31579e4b3
container_end_page 25
container_issue 1
container_start_page 16
container_title Clinical and experimental nephrology
container_volume 23
creator Okonogi, Hideo
Kawamura, Tetsuya
Joh, Kensuke
Koike, Kentaro
Miyazaki, Yoichi
Ogura, Makoto
Tsuboi, Nobuo
Hirano, Keita
Matsushima, Masato
Yokoo, Takashi
Horikoshi, Satoshi
Suzuki, Yusuke
Yasuda, Takashi
Shirai, Sayuri
Shibata, Takanori
Hattori, Motoshi
Akioka, Yuko
Katafuchi, Ritsuko
Hashiguchi, Akinori
Hisano, Satoshi
Shimizu, Akira
Kimura, Kenjiro
Maruyama, Shoichi
Matsuo, Seiichi
Tomino, Yasuhiko
description Histological classification is essential in the clinical management of immunoglobulin A nephropathy (IgAN). However, there are limitations in predicting the prognosis of IgAN based on histological information alone, which suggests the need for better prognostic models. Therefore, we defined a prognostic model by combining the grade of clinical severity with the histological grading system by the following processes. We included 270 patients and explored the clinical variables associated with progression to end-stage renal disease (ESRD). Then, we created a predictive clinical grading system and defined the risk grades for dialysis induction by a combination of the clinical grade (CG) and the histological grade (HG). A logistic regression analysis revealed that the 24-h urinary protein excretion (UPE) and the estimated glomerular filtration rate (eGFR) were significant independent variables. We selected UPE of 0.5 g/day and eGFR of 60 ml/min/1.73 m 2 as the threshold values for the classification of CG. The risk of progression to ESRD of patients with CG II and III was significantly higher than that of patients with CG I. The patients were then re-classified into nine compartments based on the combination of CG and HG. Furthermore, the nine compartments were grouped into four risk groups. The risk of ESRD in the moderate, high, and super-high-risk groups was significantly higher than that in the low-risk group. Herein, we are giving a detailed description of our grading system for IgA nephropathy that predicted the risk of dialysis based on the combination of CG and HG.
doi_str_mv 10.1007/s10157-018-1657-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125575413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-cb7994c355e070b611e341c0e780b707a51730055619b72eed7d60ce31579e4b3</originalsourceid><addsrcrecordid>eNp1kctu1TAQhiMEoqXwAGyQJTZsAp7Yjk82SEcVl0qV2MDacpw5iUtiB9uplHfpw-KcU8pFYmOPx9_8nvFfFC-BvgVK5bsIFIQsKexKqLfgUXEOnMlSyqZ5nGPGqxKkgLPiWYw3lNJdI5qnxRmjrJYM5Hlxtyd90J11PYlrTDiRNOhE5oCdNSnmE5Jg43fiD6SzelyjjcS6bjHJepcjctXvicN5CH7WaVhJXi26XNrqiB3J0KZh_NRap49FWeqYGq2zRo9Eu44MNiY_-v6YiHiLwab1efHkoMeIL-73i-Lbxw9fLz-X118-XV3ur0sjeJNK0-ZxuWFCIJW0rQGQcTAU5Y62kkotQDJKhaihaWWF2MmupgZZ_rwGecsuivcn3XlpJ-xMbj_oUc3BTjqsymur_r5xdlC9v1U145w1kAXe3AsE_2PBmNRko8Fx1A79ElUFVd1ALaHK6Ot_0Bu_BJfH2yghpODAMgUnygQfY8DDQzNA1ea9Onmvsvdq817RXPPqzykeKn6ZnYHqBMR85XoMv5_-v-pPHb28gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125575413</pqid></control><display><type>article</type><title>A grading system that predicts the risk of dialysis induction in IgA nephropathy patients based on the combination of the clinical and histological severity</title><source>Springer Nature</source><creator>Okonogi, Hideo ; Kawamura, Tetsuya ; Joh, Kensuke ; Koike, Kentaro ; Miyazaki, Yoichi ; Ogura, Makoto ; Tsuboi, Nobuo ; Hirano, Keita ; Matsushima, Masato ; Yokoo, Takashi ; Horikoshi, Satoshi ; Suzuki, Yusuke ; Yasuda, Takashi ; Shirai, Sayuri ; Shibata, Takanori ; Hattori, Motoshi ; Akioka, Yuko ; Katafuchi, Ritsuko ; Hashiguchi, Akinori ; Hisano, Satoshi ; Shimizu, Akira ; Kimura, Kenjiro ; Maruyama, Shoichi ; Matsuo, Seiichi ; Tomino, Yasuhiko</creator><creatorcontrib>Okonogi, Hideo ; Kawamura, Tetsuya ; Joh, Kensuke ; Koike, Kentaro ; Miyazaki, Yoichi ; Ogura, Makoto ; Tsuboi, Nobuo ; Hirano, Keita ; Matsushima, Masato ; Yokoo, Takashi ; Horikoshi, Satoshi ; Suzuki, Yusuke ; Yasuda, Takashi ; Shirai, Sayuri ; Shibata, Takanori ; Hattori, Motoshi ; Akioka, Yuko ; Katafuchi, Ritsuko ; Hashiguchi, Akinori ; Hisano, Satoshi ; Shimizu, Akira ; Kimura, Kenjiro ; Maruyama, Shoichi ; Matsuo, Seiichi ; Tomino, Yasuhiko ; Special IgA Nephropathy Study Group ; for The Special IgA Nephropathy Study Group</creatorcontrib><description>Histological classification is essential in the clinical management of immunoglobulin A nephropathy (IgAN). However, there are limitations in predicting the prognosis of IgAN based on histological information alone, which suggests the need for better prognostic models. Therefore, we defined a prognostic model by combining the grade of clinical severity with the histological grading system by the following processes. We included 270 patients and explored the clinical variables associated with progression to end-stage renal disease (ESRD). Then, we created a predictive clinical grading system and defined the risk grades for dialysis induction by a combination of the clinical grade (CG) and the histological grade (HG). A logistic regression analysis revealed that the 24-h urinary protein excretion (UPE) and the estimated glomerular filtration rate (eGFR) were significant independent variables. We selected UPE of 0.5 g/day and eGFR of 60 ml/min/1.73 m 2 as the threshold values for the classification of CG. The risk of progression to ESRD of patients with CG II and III was significantly higher than that of patients with CG I. The patients were then re-classified into nine compartments based on the combination of CG and HG. Furthermore, the nine compartments were grouped into four risk groups. The risk of ESRD in the moderate, high, and super-high-risk groups was significantly higher than that in the low-risk group. Herein, we are giving a detailed description of our grading system for IgA nephropathy that predicted the risk of dialysis based on the combination of CG and HG.</description><identifier>ISSN: 1342-1751</identifier><identifier>ISSN: 1437-7799</identifier><identifier>EISSN: 1437-7799</identifier><identifier>DOI: 10.1007/s10157-018-1657-0</identifier><identifier>PMID: 30367317</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Dialysis ; Disease Progression ; End-stage renal disease ; Epidermal growth factor receptors ; Excretion ; Glomerular filtration rate ; Glomerulonephritis, IGA - diagnosis ; Glomerulonephritis, IGA - pathology ; Glomerulonephritis, IGA - therapy ; Hemodialysis ; Humans ; IgA nephropathy ; Immunoglobulin A ; Kidney diseases ; Kidney Function Tests ; Medicine ; Medicine &amp; Public Health ; Nephrology ; Risk Assessment ; Risk groups ; Special Report ; Urology</subject><ispartof>Clinical and experimental nephrology, 2019-01, Vol.23 (1), p.16-25</ispartof><rights>The Author(s) 2018</rights><rights>Clinical and Experimental Nephrology is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-cb7994c355e070b611e341c0e780b707a51730055619b72eed7d60ce31579e4b3</citedby><cites>FETCH-LOGICAL-c549t-cb7994c355e070b611e341c0e780b707a51730055619b72eed7d60ce31579e4b3</cites><orcidid>0000-0002-8376-5273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30367317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okonogi, Hideo</creatorcontrib><creatorcontrib>Kawamura, Tetsuya</creatorcontrib><creatorcontrib>Joh, Kensuke</creatorcontrib><creatorcontrib>Koike, Kentaro</creatorcontrib><creatorcontrib>Miyazaki, Yoichi</creatorcontrib><creatorcontrib>Ogura, Makoto</creatorcontrib><creatorcontrib>Tsuboi, Nobuo</creatorcontrib><creatorcontrib>Hirano, Keita</creatorcontrib><creatorcontrib>Matsushima, Masato</creatorcontrib><creatorcontrib>Yokoo, Takashi</creatorcontrib><creatorcontrib>Horikoshi, Satoshi</creatorcontrib><creatorcontrib>Suzuki, Yusuke</creatorcontrib><creatorcontrib>Yasuda, Takashi</creatorcontrib><creatorcontrib>Shirai, Sayuri</creatorcontrib><creatorcontrib>Shibata, Takanori</creatorcontrib><creatorcontrib>Hattori, Motoshi</creatorcontrib><creatorcontrib>Akioka, Yuko</creatorcontrib><creatorcontrib>Katafuchi, Ritsuko</creatorcontrib><creatorcontrib>Hashiguchi, Akinori</creatorcontrib><creatorcontrib>Hisano, Satoshi</creatorcontrib><creatorcontrib>Shimizu, Akira</creatorcontrib><creatorcontrib>Kimura, Kenjiro</creatorcontrib><creatorcontrib>Maruyama, Shoichi</creatorcontrib><creatorcontrib>Matsuo, Seiichi</creatorcontrib><creatorcontrib>Tomino, Yasuhiko</creatorcontrib><creatorcontrib>Special IgA Nephropathy Study Group</creatorcontrib><creatorcontrib>for The Special IgA Nephropathy Study Group</creatorcontrib><title>A grading system that predicts the risk of dialysis induction in IgA nephropathy patients based on the combination of the clinical and histological severity</title><title>Clinical and experimental nephrology</title><addtitle>Clin Exp Nephrol</addtitle><addtitle>Clin Exp Nephrol</addtitle><description>Histological classification is essential in the clinical management of immunoglobulin A nephropathy (IgAN). However, there are limitations in predicting the prognosis of IgAN based on histological information alone, which suggests the need for better prognostic models. Therefore, we defined a prognostic model by combining the grade of clinical severity with the histological grading system by the following processes. We included 270 patients and explored the clinical variables associated with progression to end-stage renal disease (ESRD). Then, we created a predictive clinical grading system and defined the risk grades for dialysis induction by a combination of the clinical grade (CG) and the histological grade (HG). A logistic regression analysis revealed that the 24-h urinary protein excretion (UPE) and the estimated glomerular filtration rate (eGFR) were significant independent variables. We selected UPE of 0.5 g/day and eGFR of 60 ml/min/1.73 m 2 as the threshold values for the classification of CG. The risk of progression to ESRD of patients with CG II and III was significantly higher than that of patients with CG I. The patients were then re-classified into nine compartments based on the combination of CG and HG. Furthermore, the nine compartments were grouped into four risk groups. The risk of ESRD in the moderate, high, and super-high-risk groups was significantly higher than that in the low-risk group. Herein, we are giving a detailed description of our grading system for IgA nephropathy that predicted the risk of dialysis based on the combination of CG and HG.</description><subject>Dialysis</subject><subject>Disease Progression</subject><subject>End-stage renal disease</subject><subject>Epidermal growth factor receptors</subject><subject>Excretion</subject><subject>Glomerular filtration rate</subject><subject>Glomerulonephritis, IGA - diagnosis</subject><subject>Glomerulonephritis, IGA - pathology</subject><subject>Glomerulonephritis, IGA - therapy</subject><subject>Hemodialysis</subject><subject>Humans</subject><subject>IgA nephropathy</subject><subject>Immunoglobulin A</subject><subject>Kidney diseases</subject><subject>Kidney Function Tests</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nephrology</subject><subject>Risk Assessment</subject><subject>Risk groups</subject><subject>Special Report</subject><subject>Urology</subject><issn>1342-1751</issn><issn>1437-7799</issn><issn>1437-7799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1TAQhiMEoqXwAGyQJTZsAp7Yjk82SEcVl0qV2MDacpw5iUtiB9uplHfpw-KcU8pFYmOPx9_8nvFfFC-BvgVK5bsIFIQsKexKqLfgUXEOnMlSyqZ5nGPGqxKkgLPiWYw3lNJdI5qnxRmjrJYM5Hlxtyd90J11PYlrTDiRNOhE5oCdNSnmE5Jg43fiD6SzelyjjcS6bjHJepcjctXvicN5CH7WaVhJXi26XNrqiB3J0KZh_NRap49FWeqYGq2zRo9Eu44MNiY_-v6YiHiLwab1efHkoMeIL-73i-Lbxw9fLz-X118-XV3ur0sjeJNK0-ZxuWFCIJW0rQGQcTAU5Y62kkotQDJKhaihaWWF2MmupgZZ_rwGecsuivcn3XlpJ-xMbj_oUc3BTjqsymur_r5xdlC9v1U145w1kAXe3AsE_2PBmNRko8Fx1A79ElUFVd1ALaHK6Ot_0Bu_BJfH2yghpODAMgUnygQfY8DDQzNA1ea9Onmvsvdq817RXPPqzykeKn6ZnYHqBMR85XoMv5_-v-pPHb28gg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Okonogi, Hideo</creator><creator>Kawamura, Tetsuya</creator><creator>Joh, Kensuke</creator><creator>Koike, Kentaro</creator><creator>Miyazaki, Yoichi</creator><creator>Ogura, Makoto</creator><creator>Tsuboi, Nobuo</creator><creator>Hirano, Keita</creator><creator>Matsushima, Masato</creator><creator>Yokoo, Takashi</creator><creator>Horikoshi, Satoshi</creator><creator>Suzuki, Yusuke</creator><creator>Yasuda, Takashi</creator><creator>Shirai, Sayuri</creator><creator>Shibata, Takanori</creator><creator>Hattori, Motoshi</creator><creator>Akioka, Yuko</creator><creator>Katafuchi, Ritsuko</creator><creator>Hashiguchi, Akinori</creator><creator>Hisano, Satoshi</creator><creator>Shimizu, Akira</creator><creator>Kimura, Kenjiro</creator><creator>Maruyama, Shoichi</creator><creator>Matsuo, Seiichi</creator><creator>Tomino, Yasuhiko</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8376-5273</orcidid></search><sort><creationdate>20190101</creationdate><title>A grading system that predicts the risk of dialysis induction in IgA nephropathy patients based on the combination of the clinical and histological severity</title><author>Okonogi, Hideo ; Kawamura, Tetsuya ; Joh, Kensuke ; Koike, Kentaro ; Miyazaki, Yoichi ; Ogura, Makoto ; Tsuboi, Nobuo ; Hirano, Keita ; Matsushima, Masato ; Yokoo, Takashi ; Horikoshi, Satoshi ; Suzuki, Yusuke ; Yasuda, Takashi ; Shirai, Sayuri ; Shibata, Takanori ; Hattori, Motoshi ; Akioka, Yuko ; Katafuchi, Ritsuko ; Hashiguchi, Akinori ; Hisano, Satoshi ; Shimizu, Akira ; Kimura, Kenjiro ; Maruyama, Shoichi ; Matsuo, Seiichi ; Tomino, Yasuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-cb7994c355e070b611e341c0e780b707a51730055619b72eed7d60ce31579e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dialysis</topic><topic>Disease Progression</topic><topic>End-stage renal disease</topic><topic>Epidermal growth factor receptors</topic><topic>Excretion</topic><topic>Glomerular filtration rate</topic><topic>Glomerulonephritis, IGA - diagnosis</topic><topic>Glomerulonephritis, IGA - pathology</topic><topic>Glomerulonephritis, IGA - therapy</topic><topic>Hemodialysis</topic><topic>Humans</topic><topic>IgA nephropathy</topic><topic>Immunoglobulin A</topic><topic>Kidney diseases</topic><topic>Kidney Function Tests</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nephrology</topic><topic>Risk Assessment</topic><topic>Risk groups</topic><topic>Special Report</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okonogi, Hideo</creatorcontrib><creatorcontrib>Kawamura, Tetsuya</creatorcontrib><creatorcontrib>Joh, Kensuke</creatorcontrib><creatorcontrib>Koike, Kentaro</creatorcontrib><creatorcontrib>Miyazaki, Yoichi</creatorcontrib><creatorcontrib>Ogura, Makoto</creatorcontrib><creatorcontrib>Tsuboi, Nobuo</creatorcontrib><creatorcontrib>Hirano, Keita</creatorcontrib><creatorcontrib>Matsushima, Masato</creatorcontrib><creatorcontrib>Yokoo, Takashi</creatorcontrib><creatorcontrib>Horikoshi, Satoshi</creatorcontrib><creatorcontrib>Suzuki, Yusuke</creatorcontrib><creatorcontrib>Yasuda, Takashi</creatorcontrib><creatorcontrib>Shirai, Sayuri</creatorcontrib><creatorcontrib>Shibata, Takanori</creatorcontrib><creatorcontrib>Hattori, Motoshi</creatorcontrib><creatorcontrib>Akioka, Yuko</creatorcontrib><creatorcontrib>Katafuchi, Ritsuko</creatorcontrib><creatorcontrib>Hashiguchi, Akinori</creatorcontrib><creatorcontrib>Hisano, Satoshi</creatorcontrib><creatorcontrib>Shimizu, Akira</creatorcontrib><creatorcontrib>Kimura, Kenjiro</creatorcontrib><creatorcontrib>Maruyama, Shoichi</creatorcontrib><creatorcontrib>Matsuo, Seiichi</creatorcontrib><creatorcontrib>Tomino, Yasuhiko</creatorcontrib><creatorcontrib>Special IgA Nephropathy Study Group</creatorcontrib><creatorcontrib>for The Special IgA Nephropathy Study Group</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical and experimental nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okonogi, Hideo</au><au>Kawamura, Tetsuya</au><au>Joh, Kensuke</au><au>Koike, Kentaro</au><au>Miyazaki, Yoichi</au><au>Ogura, Makoto</au><au>Tsuboi, Nobuo</au><au>Hirano, Keita</au><au>Matsushima, Masato</au><au>Yokoo, Takashi</au><au>Horikoshi, Satoshi</au><au>Suzuki, Yusuke</au><au>Yasuda, Takashi</au><au>Shirai, Sayuri</au><au>Shibata, Takanori</au><au>Hattori, Motoshi</au><au>Akioka, Yuko</au><au>Katafuchi, Ritsuko</au><au>Hashiguchi, Akinori</au><au>Hisano, Satoshi</au><au>Shimizu, Akira</au><au>Kimura, Kenjiro</au><au>Maruyama, Shoichi</au><au>Matsuo, Seiichi</au><au>Tomino, Yasuhiko</au><aucorp>Special IgA Nephropathy Study Group</aucorp><aucorp>for The Special IgA Nephropathy Study Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A grading system that predicts the risk of dialysis induction in IgA nephropathy patients based on the combination of the clinical and histological severity</atitle><jtitle>Clinical and experimental nephrology</jtitle><stitle>Clin Exp Nephrol</stitle><addtitle>Clin Exp Nephrol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>16</spage><epage>25</epage><pages>16-25</pages><issn>1342-1751</issn><issn>1437-7799</issn><eissn>1437-7799</eissn><abstract>Histological classification is essential in the clinical management of immunoglobulin A nephropathy (IgAN). However, there are limitations in predicting the prognosis of IgAN based on histological information alone, which suggests the need for better prognostic models. Therefore, we defined a prognostic model by combining the grade of clinical severity with the histological grading system by the following processes. We included 270 patients and explored the clinical variables associated with progression to end-stage renal disease (ESRD). Then, we created a predictive clinical grading system and defined the risk grades for dialysis induction by a combination of the clinical grade (CG) and the histological grade (HG). A logistic regression analysis revealed that the 24-h urinary protein excretion (UPE) and the estimated glomerular filtration rate (eGFR) were significant independent variables. We selected UPE of 0.5 g/day and eGFR of 60 ml/min/1.73 m 2 as the threshold values for the classification of CG. The risk of progression to ESRD of patients with CG II and III was significantly higher than that of patients with CG I. The patients were then re-classified into nine compartments based on the combination of CG and HG. Furthermore, the nine compartments were grouped into four risk groups. The risk of ESRD in the moderate, high, and super-high-risk groups was significantly higher than that in the low-risk group. Herein, we are giving a detailed description of our grading system for IgA nephropathy that predicted the risk of dialysis based on the combination of CG and HG.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>30367317</pmid><doi>10.1007/s10157-018-1657-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8376-5273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1342-1751
ispartof Clinical and experimental nephrology, 2019-01, Vol.23 (1), p.16-25
issn 1342-1751
1437-7799
1437-7799
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344391
source Springer Nature
subjects Dialysis
Disease Progression
End-stage renal disease
Epidermal growth factor receptors
Excretion
Glomerular filtration rate
Glomerulonephritis, IGA - diagnosis
Glomerulonephritis, IGA - pathology
Glomerulonephritis, IGA - therapy
Hemodialysis
Humans
IgA nephropathy
Immunoglobulin A
Kidney diseases
Kidney Function Tests
Medicine
Medicine & Public Health
Nephrology
Risk Assessment
Risk groups
Special Report
Urology
title A grading system that predicts the risk of dialysis induction in IgA nephropathy patients based on the combination of the clinical and histological severity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20grading%20system%20that%20predicts%20the%20risk%20of%20dialysis%20induction%20in%20IgA%20nephropathy%20patients%20based%20on%20the%20combination%20of%20the%20clinical%20and%20histological%20severity&rft.jtitle=Clinical%20and%20experimental%20nephrology&rft.au=Okonogi,%20Hideo&rft.aucorp=Special%20IgA%20Nephropathy%20Study%20Group&rft.date=2019-01-01&rft.volume=23&rft.issue=1&rft.spage=16&rft.epage=25&rft.pages=16-25&rft.issn=1342-1751&rft.eissn=1437-7799&rft_id=info:doi/10.1007/s10157-018-1657-0&rft_dat=%3Cproquest_pubme%3E2125575413%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-cb7994c355e070b611e341c0e780b707a51730055619b72eed7d60ce31579e4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2125575413&rft_id=info:pmid/30367317&rfr_iscdi=true