Loading…

Alternative Face-on Thin Film Structure of Pentacene

Pentacene attracts a great deal of attention as a basic material used in organic thin-film transistors for many years. Pentacene is known to form a highly ordered structure in a thin film, in which the molecular long axis aligns perpendicularly to the substrate surface, i.e., end-on orientation. On...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-01, Vol.9 (1), p.579-579, Article 579
Main Authors: Shioya, Nobutaka, Murdey, Richard, Nakao, Kazuto, Yoshida, Hiroyuki, Koganezawa, Tomoyuki, Eda, Kazuo, Shimoaka, Takafumi, Hasegawa, Takeshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pentacene attracts a great deal of attention as a basic material used in organic thin-film transistors for many years. Pentacene is known to form a highly ordered structure in a thin film, in which the molecular long axis aligns perpendicularly to the substrate surface, i.e., end-on orientation. On the other hand, the face-on oriented thin film, where the molecular plane is parallel to the substrate, has never been found on an inert substrate represented by SiO 2 . As a result, the face-on orientation has long been believed to be generated only on specific substrates such as a metal single crystal. In the present study, the face-on orientation grown on a SiO 2 surface has first been identified by means of visible and infrared p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) together with two-dimensional grazing incidence X-ray diffraction (2D-GIXD). The combination of the multiple techniques readily reveals that the face-on phase is definitely realized as the dominant component. The face-on film is obtained when the film growth is kinetically restricted to be prevented from transforming into the thermodynamically stable structure, i.e., the end-on orientation. This concept is useful for controlling the molecular orientation in general organic semiconductor thin films.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-37166-6