Loading…

Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APPSwe/PSEN1M146V transgenic mice

Progression of Alzheimer's disease is thought initially to depend on rising amyloidβ and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidβ, before plaques are detected. Recently...

Full description

Saved in:
Bibliographic Details
Published in:EBioMedicine 2019-01, Vol.39, p.422-435
Main Authors: Medawar, Evelyn, Benway, Tiffanie A., Liu, Wenfei, Hanan, Taylor A., Haslehurst, Peter, James, Owain T., Yap, Kenrick, Muessig, Laurenz, Moroni, Fabia, Nahaboo Solim, Muzammil A., Baidildinova, Gaukhar, Wang, Rui, Richardson, Jill C., Cacucci, Francesca, Salih, Dervis A., Cummings, Damian M., Edwards, Frances A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2816-3060a516e3307d543a55c5db9fff7a732affd75becf559daebf80c665cf8e6a73
cites cdi_FETCH-LOGICAL-c2816-3060a516e3307d543a55c5db9fff7a732affd75becf559daebf80c665cf8e6a73
container_end_page 435
container_issue
container_start_page 422
container_title EBioMedicine
container_volume 39
creator Medawar, Evelyn
Benway, Tiffanie A.
Liu, Wenfei
Hanan, Taylor A.
Haslehurst, Peter
James, Owain T.
Yap, Kenrick
Muessig, Laurenz
Moroni, Fabia
Nahaboo Solim, Muzammil A.
Baidildinova, Gaukhar
Wang, Rui
Richardson, Jill C.
Cacucci, Francesca
Salih, Dervis A.
Cummings, Damian M.
Edwards, Frances A.
description Progression of Alzheimer's disease is thought initially to depend on rising amyloidβ and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidβ, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. CA1 synaptic transmission and plasticity were investigated using in vitro electrophysiology. Microglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidβ levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition. GlaxoSmithKline; BBSRC; UCL; ARUK; MRC.
doi_str_mv 10.1016/j.ebiom.2018.12.006
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6354711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352396418305772</els_id><sourcerecordid>2157656911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2816-3060a516e3307d543a55c5db9fff7a732affd75becf559daebf80c665cf8e6a73</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhyNERau2T8DFRw5sasexkz2AVFXLH6mUlQpcLccZp7Ny7GBnF-1T8C48CM-E260quHCy5fnNN9Z8RfGS0ZJRJi82JXQYxrKirC1ZVVIqnxUnFRfVgi9l_fyv-3FxntKGUspEnR_bF8Uxp0IIWvOT4ufKWjBzIsGSiAn9QPS4dwH737-Igx24XPLkDqcpGD1O2pG093qa0ZA5ap9GTAmDf01GNDEMDnMiQpqCT0C074kJg8c5Rwh6crle3_6Ai_Xt6oZ9YrX8doAM4DMvE-CsOLLaJTh_PE-Lr-9WX64-LK4_v_94dXm9MFXL5IJTSbVgEjinTS9qroUwou-W1tpGN7zS1vaN6MBYIZa9hs621EgpjG1B5sBp8fbAnbbdCL0Bnz_i1BRx1HGvgkb1b8XjnRrCTkku6oaxDHj1CIjh-xbSrPImDDinPYRtUhUTjRRy-RDlh2heUEoR7NMYRtW9TbVRDzbVvU3FKpVt5q43h66sAHYIUSWD4A30GLMx1Qf8b_8f8MusSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157656911</pqid></control><display><type>article</type><title>Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APPSwe/PSEN1M146V transgenic mice</title><source>Open Access: PubMed Central</source><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Medawar, Evelyn ; Benway, Tiffanie A. ; Liu, Wenfei ; Hanan, Taylor A. ; Haslehurst, Peter ; James, Owain T. ; Yap, Kenrick ; Muessig, Laurenz ; Moroni, Fabia ; Nahaboo Solim, Muzammil A. ; Baidildinova, Gaukhar ; Wang, Rui ; Richardson, Jill C. ; Cacucci, Francesca ; Salih, Dervis A. ; Cummings, Damian M. ; Edwards, Frances A.</creator><creatorcontrib>Medawar, Evelyn ; Benway, Tiffanie A. ; Liu, Wenfei ; Hanan, Taylor A. ; Haslehurst, Peter ; James, Owain T. ; Yap, Kenrick ; Muessig, Laurenz ; Moroni, Fabia ; Nahaboo Solim, Muzammil A. ; Baidildinova, Gaukhar ; Wang, Rui ; Richardson, Jill C. ; Cacucci, Francesca ; Salih, Dervis A. ; Cummings, Damian M. ; Edwards, Frances A.</creatorcontrib><description>Progression of Alzheimer's disease is thought initially to depend on rising amyloidβ and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidβ, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. CA1 synaptic transmission and plasticity were investigated using in vitro electrophysiology. Microglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidβ levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition. GlaxoSmithKline; BBSRC; UCL; ARUK; MRC.</description><identifier>ISSN: 2352-3964</identifier><identifier>EISSN: 2352-3964</identifier><identifier>DOI: 10.1016/j.ebiom.2018.12.006</identifier><identifier>PMID: 30555043</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Alzheimer's disease ; Dementia ; Microglia ; Mouse model ; Neurodegeneration ; Plaque ; Research paper ; Synaptic transmission</subject><ispartof>EBioMedicine, 2019-01, Vol.39, p.422-435</ispartof><rights>2018</rights><rights>Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.</rights><rights>Crown Copyright © 2018 Published by Elsevier B.V. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2816-3060a516e3307d543a55c5db9fff7a732affd75becf559daebf80c665cf8e6a73</citedby><cites>FETCH-LOGICAL-c2816-3060a516e3307d543a55c5db9fff7a732affd75becf559daebf80c665cf8e6a73</cites><orcidid>0000-0003-1409-5592 ; 0000-0001-5567-0907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354711/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352396418305772$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53770,53772</link.rule.ids></links><search><creatorcontrib>Medawar, Evelyn</creatorcontrib><creatorcontrib>Benway, Tiffanie A.</creatorcontrib><creatorcontrib>Liu, Wenfei</creatorcontrib><creatorcontrib>Hanan, Taylor A.</creatorcontrib><creatorcontrib>Haslehurst, Peter</creatorcontrib><creatorcontrib>James, Owain T.</creatorcontrib><creatorcontrib>Yap, Kenrick</creatorcontrib><creatorcontrib>Muessig, Laurenz</creatorcontrib><creatorcontrib>Moroni, Fabia</creatorcontrib><creatorcontrib>Nahaboo Solim, Muzammil A.</creatorcontrib><creatorcontrib>Baidildinova, Gaukhar</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Richardson, Jill C.</creatorcontrib><creatorcontrib>Cacucci, Francesca</creatorcontrib><creatorcontrib>Salih, Dervis A.</creatorcontrib><creatorcontrib>Cummings, Damian M.</creatorcontrib><creatorcontrib>Edwards, Frances A.</creatorcontrib><title>Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APPSwe/PSEN1M146V transgenic mice</title><title>EBioMedicine</title><description>Progression of Alzheimer's disease is thought initially to depend on rising amyloidβ and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidβ, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. CA1 synaptic transmission and plasticity were investigated using in vitro electrophysiology. Microglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidβ levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition. GlaxoSmithKline; BBSRC; UCL; ARUK; MRC.</description><subject>Alzheimer's disease</subject><subject>Dementia</subject><subject>Microglia</subject><subject>Mouse model</subject><subject>Neurodegeneration</subject><subject>Plaque</subject><subject>Research paper</subject><subject>Synaptic transmission</subject><issn>2352-3964</issn><issn>2352-3964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQhyNERau2T8DFRw5sasexkz2AVFXLH6mUlQpcLccZp7Ny7GBnF-1T8C48CM-E260quHCy5fnNN9Z8RfGS0ZJRJi82JXQYxrKirC1ZVVIqnxUnFRfVgi9l_fyv-3FxntKGUspEnR_bF8Uxp0IIWvOT4ufKWjBzIsGSiAn9QPS4dwH737-Igx24XPLkDqcpGD1O2pG093qa0ZA5ap9GTAmDf01GNDEMDnMiQpqCT0C074kJg8c5Rwh6crle3_6Ai_Xt6oZ9YrX8doAM4DMvE-CsOLLaJTh_PE-Lr-9WX64-LK4_v_94dXm9MFXL5IJTSbVgEjinTS9qroUwou-W1tpGN7zS1vaN6MBYIZa9hs621EgpjG1B5sBp8fbAnbbdCL0Bnz_i1BRx1HGvgkb1b8XjnRrCTkku6oaxDHj1CIjh-xbSrPImDDinPYRtUhUTjRRy-RDlh2heUEoR7NMYRtW9TbVRDzbVvU3FKpVt5q43h66sAHYIUSWD4A30GLMx1Qf8b_8f8MusSQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Medawar, Evelyn</creator><creator>Benway, Tiffanie A.</creator><creator>Liu, Wenfei</creator><creator>Hanan, Taylor A.</creator><creator>Haslehurst, Peter</creator><creator>James, Owain T.</creator><creator>Yap, Kenrick</creator><creator>Muessig, Laurenz</creator><creator>Moroni, Fabia</creator><creator>Nahaboo Solim, Muzammil A.</creator><creator>Baidildinova, Gaukhar</creator><creator>Wang, Rui</creator><creator>Richardson, Jill C.</creator><creator>Cacucci, Francesca</creator><creator>Salih, Dervis A.</creator><creator>Cummings, Damian M.</creator><creator>Edwards, Frances A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1409-5592</orcidid><orcidid>https://orcid.org/0000-0001-5567-0907</orcidid></search><sort><creationdate>20190101</creationdate><title>Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APPSwe/PSEN1M146V transgenic mice</title><author>Medawar, Evelyn ; Benway, Tiffanie A. ; Liu, Wenfei ; Hanan, Taylor A. ; Haslehurst, Peter ; James, Owain T. ; Yap, Kenrick ; Muessig, Laurenz ; Moroni, Fabia ; Nahaboo Solim, Muzammil A. ; Baidildinova, Gaukhar ; Wang, Rui ; Richardson, Jill C. ; Cacucci, Francesca ; Salih, Dervis A. ; Cummings, Damian M. ; Edwards, Frances A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2816-3060a516e3307d543a55c5db9fff7a732affd75becf559daebf80c665cf8e6a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alzheimer's disease</topic><topic>Dementia</topic><topic>Microglia</topic><topic>Mouse model</topic><topic>Neurodegeneration</topic><topic>Plaque</topic><topic>Research paper</topic><topic>Synaptic transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medawar, Evelyn</creatorcontrib><creatorcontrib>Benway, Tiffanie A.</creatorcontrib><creatorcontrib>Liu, Wenfei</creatorcontrib><creatorcontrib>Hanan, Taylor A.</creatorcontrib><creatorcontrib>Haslehurst, Peter</creatorcontrib><creatorcontrib>James, Owain T.</creatorcontrib><creatorcontrib>Yap, Kenrick</creatorcontrib><creatorcontrib>Muessig, Laurenz</creatorcontrib><creatorcontrib>Moroni, Fabia</creatorcontrib><creatorcontrib>Nahaboo Solim, Muzammil A.</creatorcontrib><creatorcontrib>Baidildinova, Gaukhar</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Richardson, Jill C.</creatorcontrib><creatorcontrib>Cacucci, Francesca</creatorcontrib><creatorcontrib>Salih, Dervis A.</creatorcontrib><creatorcontrib>Cummings, Damian M.</creatorcontrib><creatorcontrib>Edwards, Frances A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EBioMedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medawar, Evelyn</au><au>Benway, Tiffanie A.</au><au>Liu, Wenfei</au><au>Hanan, Taylor A.</au><au>Haslehurst, Peter</au><au>James, Owain T.</au><au>Yap, Kenrick</au><au>Muessig, Laurenz</au><au>Moroni, Fabia</au><au>Nahaboo Solim, Muzammil A.</au><au>Baidildinova, Gaukhar</au><au>Wang, Rui</au><au>Richardson, Jill C.</au><au>Cacucci, Francesca</au><au>Salih, Dervis A.</au><au>Cummings, Damian M.</au><au>Edwards, Frances A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APPSwe/PSEN1M146V transgenic mice</atitle><jtitle>EBioMedicine</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>39</volume><spage>422</spage><epage>435</epage><pages>422-435</pages><issn>2352-3964</issn><eissn>2352-3964</eissn><abstract>Progression of Alzheimer's disease is thought initially to depend on rising amyloidβ and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidβ, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. CA1 synaptic transmission and plasticity were investigated using in vitro electrophysiology. Microglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidβ levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition. GlaxoSmithKline; BBSRC; UCL; ARUK; MRC.</abstract><pub>Elsevier B.V</pub><pmid>30555043</pmid><doi>10.1016/j.ebiom.2018.12.006</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1409-5592</orcidid><orcidid>https://orcid.org/0000-0001-5567-0907</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-3964
ispartof EBioMedicine, 2019-01, Vol.39, p.422-435
issn 2352-3964
2352-3964
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6354711
source Open Access: PubMed Central; ScienceDirect - Connect here FIRST to enable access
subjects Alzheimer's disease
Dementia
Microglia
Mouse model
Neurodegeneration
Plaque
Research paper
Synaptic transmission
title Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APPSwe/PSEN1M146V transgenic mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20rising%20amyloid%CE%B2%20levels%20on%20hippocampal%20synaptic%20transmission,%20microglial%20response%20and%20cognition%20in%20APPSwe/PSEN1M146V%20transgenic%20mice&rft.jtitle=EBioMedicine&rft.au=Medawar,%20Evelyn&rft.date=2019-01-01&rft.volume=39&rft.spage=422&rft.epage=435&rft.pages=422-435&rft.issn=2352-3964&rft.eissn=2352-3964&rft_id=info:doi/10.1016/j.ebiom.2018.12.006&rft_dat=%3Cproquest_pubme%3E2157656911%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2816-3060a516e3307d543a55c5db9fff7a732affd75becf559daebf80c665cf8e6a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157656911&rft_id=info:pmid/30555043&rfr_iscdi=true