Loading…
Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a t...
Saved in:
Published in: | Chemical reviews 2018-11, Vol.118 (22), p.10840-11022 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3 |
container_end_page | 11022 |
container_issue | 22 |
container_start_page | 10840 |
container_title | Chemical reviews |
container_volume | 118 |
creator | Adam, Suzanne M Wijeratne, Gayan B Rogler, Patrick J Diaz, Daniel E Quist, David A Liu, Jeffrey J Karlin, Kenneth D |
description | Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme–Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme–O2 and copper–O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme–Cu models, evaluating experimental and computational results, which highlight important fundamental structure–function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction. |
doi_str_mv | 10.1021/acs.chemrev.8b00074 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6360144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161287365</sourcerecordid><originalsourceid>FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3</originalsourceid><addsrcrecordid>eNp9kUFvFCEYhonR2LX6C0wMiRcvswvMADMeTMzEtSZNemh78UIY-KY7zQyMwNT238tm14168ESA533hy4PQW0rWlDC60SauzQ6mAA_ruiOEyOoZWlHOSCHqhjxHq3zWFEwIfoZexXift5wz-RKdlaSUjFRshb5fP7m0gzQYvIVNu-DWT_MIjxA_4hv_UweLb52FEJN2dnB3-AImKFo_zxDw1eNgdQR8ncJi0hIAZwhvF2fS4N1r9KLXY4Q3x_Uc3W6_3LQXxeXV12_t58tC87JJhaSd4MRYWRtrKHBiWcNBGwamKfu66gXTYEzJdSWlYH3dMWhsXctOsh4aKM_Rp0PvvHQTWAMuBT2qOQyTDk_K60H9feOGnbrzD0qUgtCqygUfjgXB_1ggJjUN0cA4agd-iYpRJmkjJOcZff8Peu-X4PJ4mRKU1bIUe6o8UCb4GAP0p89QovbuVHanju7U0V1OvftzjlPmt6wMbA7APn1693-VvwCQl6nH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161287365</pqid></control><display><type>article</type><title>Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function</title><source>Access via American Chemical Society</source><creator>Adam, Suzanne M ; Wijeratne, Gayan B ; Rogler, Patrick J ; Diaz, Daniel E ; Quist, David A ; Liu, Jeffrey J ; Karlin, Kenneth D</creator><creatorcontrib>Adam, Suzanne M ; Wijeratne, Gayan B ; Rogler, Patrick J ; Diaz, Daniel E ; Quist, David A ; Liu, Jeffrey J ; Karlin, Kenneth D</creatorcontrib><description>Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme–Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme–O2 and copper–O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme–Cu models, evaluating experimental and computational results, which highlight important fundamental structure–function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.8b00074</identifier><identifier>PMID: 30372042</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomimetics ; Chemistry ; Coordination Complexes - chemical synthesis ; Coordination Complexes - chemistry ; Coordination Complexes - metabolism ; Coordination compounds ; Copper ; Copper - chemistry ; Copper - metabolism ; Electron transfer ; Electron transport ; Electrons ; Enzymes ; Inorganic chemistry ; Iron - chemistry ; Iron - metabolism ; Molecular Structure ; Organic chemistry ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Oxygen ; Oxygen - chemistry ; Oxygen - metabolism ; Phenols ; Protons ; Reduction ; Tyrosine</subject><ispartof>Chemical reviews, 2018-11, Vol.118 (22), p.10840-11022</ispartof><rights>Copyright American Chemical Society Nov 28, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3</citedby><cites>FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3</cites><orcidid>0000-0002-5675-7040 ; 0000-0001-7609-6406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30372042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adam, Suzanne M</creatorcontrib><creatorcontrib>Wijeratne, Gayan B</creatorcontrib><creatorcontrib>Rogler, Patrick J</creatorcontrib><creatorcontrib>Diaz, Daniel E</creatorcontrib><creatorcontrib>Quist, David A</creatorcontrib><creatorcontrib>Liu, Jeffrey J</creatorcontrib><creatorcontrib>Karlin, Kenneth D</creatorcontrib><title>Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme–Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme–O2 and copper–O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme–Cu models, evaluating experimental and computational results, which highlight important fundamental structure–function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.</description><subject>Biomimetics</subject><subject>Chemistry</subject><subject>Coordination Complexes - chemical synthesis</subject><subject>Coordination Complexes - chemistry</subject><subject>Coordination Complexes - metabolism</subject><subject>Coordination compounds</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Copper - metabolism</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Inorganic chemistry</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Molecular Structure</subject><subject>Organic chemistry</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Phenols</subject><subject>Protons</subject><subject>Reduction</subject><subject>Tyrosine</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvFCEYhonR2LX6C0wMiRcvswvMADMeTMzEtSZNemh78UIY-KY7zQyMwNT238tm14168ESA533hy4PQW0rWlDC60SauzQ6mAA_ruiOEyOoZWlHOSCHqhjxHq3zWFEwIfoZexXift5wz-RKdlaSUjFRshb5fP7m0gzQYvIVNu-DWT_MIjxA_4hv_UweLb52FEJN2dnB3-AImKFo_zxDw1eNgdQR8ncJi0hIAZwhvF2fS4N1r9KLXY4Q3x_Uc3W6_3LQXxeXV12_t58tC87JJhaSd4MRYWRtrKHBiWcNBGwamKfu66gXTYEzJdSWlYH3dMWhsXctOsh4aKM_Rp0PvvHQTWAMuBT2qOQyTDk_K60H9feOGnbrzD0qUgtCqygUfjgXB_1ggJjUN0cA4agd-iYpRJmkjJOcZff8Peu-X4PJ4mRKU1bIUe6o8UCb4GAP0p89QovbuVHanju7U0V1OvftzjlPmt6wMbA7APn1693-VvwCQl6nH</recordid><startdate>20181128</startdate><enddate>20181128</enddate><creator>Adam, Suzanne M</creator><creator>Wijeratne, Gayan B</creator><creator>Rogler, Patrick J</creator><creator>Diaz, Daniel E</creator><creator>Quist, David A</creator><creator>Liu, Jeffrey J</creator><creator>Karlin, Kenneth D</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5675-7040</orcidid><orcidid>https://orcid.org/0000-0001-7609-6406</orcidid></search><sort><creationdate>20181128</creationdate><title>Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function</title><author>Adam, Suzanne M ; Wijeratne, Gayan B ; Rogler, Patrick J ; Diaz, Daniel E ; Quist, David A ; Liu, Jeffrey J ; Karlin, Kenneth D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomimetics</topic><topic>Chemistry</topic><topic>Coordination Complexes - chemical synthesis</topic><topic>Coordination Complexes - chemistry</topic><topic>Coordination Complexes - metabolism</topic><topic>Coordination compounds</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Copper - metabolism</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Inorganic chemistry</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Molecular Structure</topic><topic>Organic chemistry</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Phenols</topic><topic>Protons</topic><topic>Reduction</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adam, Suzanne M</creatorcontrib><creatorcontrib>Wijeratne, Gayan B</creatorcontrib><creatorcontrib>Rogler, Patrick J</creatorcontrib><creatorcontrib>Diaz, Daniel E</creatorcontrib><creatorcontrib>Quist, David A</creatorcontrib><creatorcontrib>Liu, Jeffrey J</creatorcontrib><creatorcontrib>Karlin, Kenneth D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adam, Suzanne M</au><au>Wijeratne, Gayan B</au><au>Rogler, Patrick J</au><au>Diaz, Daniel E</au><au>Quist, David A</au><au>Liu, Jeffrey J</au><au>Karlin, Kenneth D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2018-11-28</date><risdate>2018</risdate><volume>118</volume><issue>22</issue><spage>10840</spage><epage>11022</epage><pages>10840-11022</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme–Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme–O2 and copper–O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme–Cu models, evaluating experimental and computational results, which highlight important fundamental structure–function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30372042</pmid><doi>10.1021/acs.chemrev.8b00074</doi><tpages>183</tpages><orcidid>https://orcid.org/0000-0002-5675-7040</orcidid><orcidid>https://orcid.org/0000-0001-7609-6406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2018-11, Vol.118 (22), p.10840-11022 |
issn | 0009-2665 1520-6890 1520-6890 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6360144 |
source | Access via American Chemical Society |
subjects | Biomimetics Chemistry Coordination Complexes - chemical synthesis Coordination Complexes - chemistry Coordination Complexes - metabolism Coordination compounds Copper Copper - chemistry Copper - metabolism Electron transfer Electron transport Electrons Enzymes Inorganic chemistry Iron - chemistry Iron - metabolism Molecular Structure Organic chemistry Oxidoreductases - chemistry Oxidoreductases - metabolism Oxygen Oxygen - chemistry Oxygen - metabolism Phenols Protons Reduction Tyrosine |
title | Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Fe/Cu%20Complexes:%20Toward%20Understanding%20Heme-Copper%20Oxidase%20Structure%20and%20Function&rft.jtitle=Chemical%20reviews&rft.au=Adam,%20Suzanne%20M&rft.date=2018-11-28&rft.volume=118&rft.issue=22&rft.spage=10840&rft.epage=11022&rft.pages=10840-11022&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.8b00074&rft_dat=%3Cproquest_pubme%3E2161287365%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2161287365&rft_id=info:pmid/30372042&rfr_iscdi=true |