Loading…

Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function

Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a t...

Full description

Saved in:
Bibliographic Details
Published in:Chemical reviews 2018-11, Vol.118 (22), p.10840-11022
Main Authors: Adam, Suzanne M, Wijeratne, Gayan B, Rogler, Patrick J, Diaz, Daniel E, Quist, David A, Liu, Jeffrey J, Karlin, Kenneth D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3
cites cdi_FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3
container_end_page 11022
container_issue 22
container_start_page 10840
container_title Chemical reviews
container_volume 118
creator Adam, Suzanne M
Wijeratne, Gayan B
Rogler, Patrick J
Diaz, Daniel E
Quist, David A
Liu, Jeffrey J
Karlin, Kenneth D
description Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme–Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme–O2 and copper–O2 (bio)­chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme–Cu models, evaluating experimental and computational results, which highlight important fundamental structure–function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
doi_str_mv 10.1021/acs.chemrev.8b00074
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6360144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161287365</sourcerecordid><originalsourceid>FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3</originalsourceid><addsrcrecordid>eNp9kUFvFCEYhonR2LX6C0wMiRcvswvMADMeTMzEtSZNemh78UIY-KY7zQyMwNT238tm14168ESA533hy4PQW0rWlDC60SauzQ6mAA_ruiOEyOoZWlHOSCHqhjxHq3zWFEwIfoZexXift5wz-RKdlaSUjFRshb5fP7m0gzQYvIVNu-DWT_MIjxA_4hv_UweLb52FEJN2dnB3-AImKFo_zxDw1eNgdQR8ncJi0hIAZwhvF2fS4N1r9KLXY4Q3x_Uc3W6_3LQXxeXV12_t58tC87JJhaSd4MRYWRtrKHBiWcNBGwamKfu66gXTYEzJdSWlYH3dMWhsXctOsh4aKM_Rp0PvvHQTWAMuBT2qOQyTDk_K60H9feOGnbrzD0qUgtCqygUfjgXB_1ggJjUN0cA4agd-iYpRJmkjJOcZff8Peu-X4PJ4mRKU1bIUe6o8UCb4GAP0p89QovbuVHanju7U0V1OvftzjlPmt6wMbA7APn1693-VvwCQl6nH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161287365</pqid></control><display><type>article</type><title>Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function</title><source>Access via American Chemical Society</source><creator>Adam, Suzanne M ; Wijeratne, Gayan B ; Rogler, Patrick J ; Diaz, Daniel E ; Quist, David A ; Liu, Jeffrey J ; Karlin, Kenneth D</creator><creatorcontrib>Adam, Suzanne M ; Wijeratne, Gayan B ; Rogler, Patrick J ; Diaz, Daniel E ; Quist, David A ; Liu, Jeffrey J ; Karlin, Kenneth D</creatorcontrib><description>Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme–Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme–O2 and copper–O2 (bio)­chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme–Cu models, evaluating experimental and computational results, which highlight important fundamental structure–function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.8b00074</identifier><identifier>PMID: 30372042</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomimetics ; Chemistry ; Coordination Complexes - chemical synthesis ; Coordination Complexes - chemistry ; Coordination Complexes - metabolism ; Coordination compounds ; Copper ; Copper - chemistry ; Copper - metabolism ; Electron transfer ; Electron transport ; Electrons ; Enzymes ; Inorganic chemistry ; Iron - chemistry ; Iron - metabolism ; Molecular Structure ; Organic chemistry ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Oxygen ; Oxygen - chemistry ; Oxygen - metabolism ; Phenols ; Protons ; Reduction ; Tyrosine</subject><ispartof>Chemical reviews, 2018-11, Vol.118 (22), p.10840-11022</ispartof><rights>Copyright American Chemical Society Nov 28, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3</citedby><cites>FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3</cites><orcidid>0000-0002-5675-7040 ; 0000-0001-7609-6406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30372042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adam, Suzanne M</creatorcontrib><creatorcontrib>Wijeratne, Gayan B</creatorcontrib><creatorcontrib>Rogler, Patrick J</creatorcontrib><creatorcontrib>Diaz, Daniel E</creatorcontrib><creatorcontrib>Quist, David A</creatorcontrib><creatorcontrib>Liu, Jeffrey J</creatorcontrib><creatorcontrib>Karlin, Kenneth D</creatorcontrib><title>Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme–Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme–O2 and copper–O2 (bio)­chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme–Cu models, evaluating experimental and computational results, which highlight important fundamental structure–function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.</description><subject>Biomimetics</subject><subject>Chemistry</subject><subject>Coordination Complexes - chemical synthesis</subject><subject>Coordination Complexes - chemistry</subject><subject>Coordination Complexes - metabolism</subject><subject>Coordination compounds</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Copper - metabolism</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Inorganic chemistry</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Molecular Structure</subject><subject>Organic chemistry</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Phenols</subject><subject>Protons</subject><subject>Reduction</subject><subject>Tyrosine</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvFCEYhonR2LX6C0wMiRcvswvMADMeTMzEtSZNemh78UIY-KY7zQyMwNT238tm14168ESA533hy4PQW0rWlDC60SauzQ6mAA_ruiOEyOoZWlHOSCHqhjxHq3zWFEwIfoZexXift5wz-RKdlaSUjFRshb5fP7m0gzQYvIVNu-DWT_MIjxA_4hv_UweLb52FEJN2dnB3-AImKFo_zxDw1eNgdQR8ncJi0hIAZwhvF2fS4N1r9KLXY4Q3x_Uc3W6_3LQXxeXV12_t58tC87JJhaSd4MRYWRtrKHBiWcNBGwamKfu66gXTYEzJdSWlYH3dMWhsXctOsh4aKM_Rp0PvvHQTWAMuBT2qOQyTDk_K60H9feOGnbrzD0qUgtCqygUfjgXB_1ggJjUN0cA4agd-iYpRJmkjJOcZff8Peu-X4PJ4mRKU1bIUe6o8UCb4GAP0p89QovbuVHanju7U0V1OvftzjlPmt6wMbA7APn1693-VvwCQl6nH</recordid><startdate>20181128</startdate><enddate>20181128</enddate><creator>Adam, Suzanne M</creator><creator>Wijeratne, Gayan B</creator><creator>Rogler, Patrick J</creator><creator>Diaz, Daniel E</creator><creator>Quist, David A</creator><creator>Liu, Jeffrey J</creator><creator>Karlin, Kenneth D</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5675-7040</orcidid><orcidid>https://orcid.org/0000-0001-7609-6406</orcidid></search><sort><creationdate>20181128</creationdate><title>Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function</title><author>Adam, Suzanne M ; Wijeratne, Gayan B ; Rogler, Patrick J ; Diaz, Daniel E ; Quist, David A ; Liu, Jeffrey J ; Karlin, Kenneth D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomimetics</topic><topic>Chemistry</topic><topic>Coordination Complexes - chemical synthesis</topic><topic>Coordination Complexes - chemistry</topic><topic>Coordination Complexes - metabolism</topic><topic>Coordination compounds</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Copper - metabolism</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Inorganic chemistry</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Molecular Structure</topic><topic>Organic chemistry</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Phenols</topic><topic>Protons</topic><topic>Reduction</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adam, Suzanne M</creatorcontrib><creatorcontrib>Wijeratne, Gayan B</creatorcontrib><creatorcontrib>Rogler, Patrick J</creatorcontrib><creatorcontrib>Diaz, Daniel E</creatorcontrib><creatorcontrib>Quist, David A</creatorcontrib><creatorcontrib>Liu, Jeffrey J</creatorcontrib><creatorcontrib>Karlin, Kenneth D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adam, Suzanne M</au><au>Wijeratne, Gayan B</au><au>Rogler, Patrick J</au><au>Diaz, Daniel E</au><au>Quist, David A</au><au>Liu, Jeffrey J</au><au>Karlin, Kenneth D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2018-11-28</date><risdate>2018</risdate><volume>118</volume><issue>22</issue><spage>10840</spage><epage>11022</epage><pages>10840-11022</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e– reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme–Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme–O2 and copper–O2 (bio)­chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme–Cu models, evaluating experimental and computational results, which highlight important fundamental structure–function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30372042</pmid><doi>10.1021/acs.chemrev.8b00074</doi><tpages>183</tpages><orcidid>https://orcid.org/0000-0002-5675-7040</orcidid><orcidid>https://orcid.org/0000-0001-7609-6406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2018-11, Vol.118 (22), p.10840-11022
issn 0009-2665
1520-6890
1520-6890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6360144
source Access via American Chemical Society
subjects Biomimetics
Chemistry
Coordination Complexes - chemical synthesis
Coordination Complexes - chemistry
Coordination Complexes - metabolism
Coordination compounds
Copper
Copper - chemistry
Copper - metabolism
Electron transfer
Electron transport
Electrons
Enzymes
Inorganic chemistry
Iron - chemistry
Iron - metabolism
Molecular Structure
Organic chemistry
Oxidoreductases - chemistry
Oxidoreductases - metabolism
Oxygen
Oxygen - chemistry
Oxygen - metabolism
Phenols
Protons
Reduction
Tyrosine
title Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Fe/Cu%20Complexes:%20Toward%20Understanding%20Heme-Copper%20Oxidase%20Structure%20and%20Function&rft.jtitle=Chemical%20reviews&rft.au=Adam,%20Suzanne%20M&rft.date=2018-11-28&rft.volume=118&rft.issue=22&rft.spage=10840&rft.epage=11022&rft.pages=10840-11022&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.8b00074&rft_dat=%3Cproquest_pubme%3E2161287365%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a539t-71b650cd78cdc1e50d295eac2ec93f84f62aecc35a47762f8b2e9d887b72fe9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2161287365&rft_id=info:pmid/30372042&rfr_iscdi=true