Loading…

UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach

Synthesis of the major glycosylated monoterpene linalool in peach is catalyzed by PpUGT85A2. Abstract The monoterpene linalool is a major contributor to aroma and flavor in peach (Prunus persica) fruit. It accumulates during fruit ripening, where up to ~40% of the compound is present in a non-volati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2019-02, Vol.70 (3), p.925-936
Main Authors: Wu, Boping, Cao, Xiangmei, Liu, Hongru, Zhu, Changqing, Klee, Harry, Zhang, Bo, Chen, Kunsong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthesis of the major glycosylated monoterpene linalool in peach is catalyzed by PpUGT85A2. Abstract The monoterpene linalool is a major contributor to aroma and flavor in peach (Prunus persica) fruit. It accumulates during fruit ripening, where up to ~40% of the compound is present in a non-volatile glycosylated form, which affects flavor quality and consumer perception by retronasal perception during tasting. Despite the importance of this sequestration to flavor, the UDP-glycosyltransferase (UGT) responsible for linalool glycosylation has not been identified in peach. UGT gene expression during peach fruit ripening and among different peach cultivars was analyzed using RNA sequencing, and transcripts correlated with linalyl-β-d-glucoside were selected as candidates for functional analysis. Kinetic resolution of a racemic mixture of R,S-linalool was shown for PpUGT85A2, with a slight preference for S-(+)-linalool. PpUGT85A2 was shown to catalyze synthesis of linalyl-β-d-glucoside in vitro, although it did not exhibit the highest enzyme activity between tested substrates. Subcellular localization of PpUGT85A2 in the cytoplasm and nucleus was detected. Application of linalool to peach leaf disks promoted PpUGT85A2 expression and linalyl-β-d-glucoside generation. Transient expression in peach fruit and stable overexpression in tobacco and Arabidopsis resulted in significant accumulation of linalyl-β-d-glucoside in vivo. Taken together, the results indicate that PpUGT85A2 expression is a major control point predicting linalyl-β-d-glucoside content.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/ery419