Loading…
Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population
Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored...
Saved in:
Published in: | BioMed research international 2019-01, Vol.2019 (2019), p.1-9 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3 |
container_end_page | 9 |
container_issue | 2019 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2019 |
creator | Tan, Hongzhuan Yan, Junxia Liang, Huiling Tian, Zhengwen Li, Xun Ma, Shujuan Hu, Shimin Chen, Mengshi |
description | Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored whether single nucleotide polymorphisms (SNPs) of these “signalling pathway” genes are associated with gestational diabetes mellitus (GDM). Methods. Case-control studies were conducted to compare GDM and control groups. A total of 334 cases and 367 controls were recruited. Seventeen candidate SNPs of the pathway were selected. Chi-square tests, logistic regression, and linear regression were used to estimate the relationships of SNPs with GDM risk and oral glucose tolerance test (OGTT), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Model-based multifactor dimensionality reduction was used to estimate the adjusted interactions between genes. Regression and interaction analyses were adjusted by maternal age, prepregnancy BMI, and weekly BMI growth. The Bonferroni correction was applied for multiple comparisons. Results. RBP4 rs7091052 was significantly associated with GDM risk. SLC2A4 rs5435, RBP4 rs7091052, PCK1 rs1042531 and rs2236745, and PIK3R1 (coding gene of the PI3K P85 subunit) rs34309 were associated with OGTT, fasting insulin, and HOMA-IR levels in the linear regression analysis. The gene-gene interaction analysis showed that, compared with pregnant women with other genotype combinations, women with SLC2A4 rs5435 (CC/CT), RBP4 rs7091052 (CC), PCK1 rs1042531 (TT/TG) and rs2236745 (TT), and PIK3R1 rs34309 (AA) had lower GDM risk. Conclusion. SLC2A4, RBP4, PCK1, and PIK3R1 genes may be involved in the pathogenesis of GDM. |
doi_str_mv | 10.1155/2019/7398063 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6363241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186140633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS0EolXpjTOyxAWJXeqxEye-IJUApeoiVgXOlu2dEFdJHOKEquKfx8suy8cJH2zL_s2z5z1CHgN7AZDnZ5yBOiuEKpkU98gxF5AtJWRw_7AX4oicxnjD0ihBMiUfkiPBSpYLqY7J92tszeRDHxs_RBpq-nFV8fNsQa9frdO8rq5gQU2_oetLcUUvsEe6Du1dF8ah8bGL9NZPTTqP008Z09LX3licMNL32LZ-miP1PTW0anyPcVs9zLsnH5EHtWkjnu7XE_L57ZtP1bvl6sPFZXW-WrqsgGlZuxqy0pYZVwLQOCytUgqZK1FxsEIokNY4DoUsc2uYBXCWFzzPwaoaUZyQlzvdYbYdbhz202haPYy-M-OdDsbrv2963-gv4ZuWQgqeQRJ4thcYw9c5tao7H13qzvQY5qg5lMn0FIFI6NN_0Jswj8mWLVXkXGSKFYla7Cg3hhhHrA-fAaa3weptsHofbMKf_NnAAf4VYwKe74Dk8cbc-v-Uw8RgbX7TkGwrmPgBjzey-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175234907</pqid></control><display><type>article</type><title>Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Tan, Hongzhuan ; Yan, Junxia ; Liang, Huiling ; Tian, Zhengwen ; Li, Xun ; Ma, Shujuan ; Hu, Shimin ; Chen, Mengshi</creator><contributor>Pan, Hai-Feng ; Hai-Feng Pan</contributor><creatorcontrib>Tan, Hongzhuan ; Yan, Junxia ; Liang, Huiling ; Tian, Zhengwen ; Li, Xun ; Ma, Shujuan ; Hu, Shimin ; Chen, Mengshi ; Pan, Hai-Feng ; Hai-Feng Pan</creatorcontrib><description>Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored whether single nucleotide polymorphisms (SNPs) of these “signalling pathway” genes are associated with gestational diabetes mellitus (GDM). Methods. Case-control studies were conducted to compare GDM and control groups. A total of 334 cases and 367 controls were recruited. Seventeen candidate SNPs of the pathway were selected. Chi-square tests, logistic regression, and linear regression were used to estimate the relationships of SNPs with GDM risk and oral glucose tolerance test (OGTT), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Model-based multifactor dimensionality reduction was used to estimate the adjusted interactions between genes. Regression and interaction analyses were adjusted by maternal age, prepregnancy BMI, and weekly BMI growth. The Bonferroni correction was applied for multiple comparisons. Results. RBP4 rs7091052 was significantly associated with GDM risk. SLC2A4 rs5435, RBP4 rs7091052, PCK1 rs1042531 and rs2236745, and PIK3R1 (coding gene of the PI3K P85 subunit) rs34309 were associated with OGTT, fasting insulin, and HOMA-IR levels in the linear regression analysis. The gene-gene interaction analysis showed that, compared with pregnant women with other genotype combinations, women with SLC2A4 rs5435 (CC/CT), RBP4 rs7091052 (CC), PCK1 rs1042531 (TT/TG) and rs2236745 (TT), and PIK3R1 rs34309 (AA) had lower GDM risk. Conclusion. SLC2A4, RBP4, PCK1, and PIK3R1 genes may be involved in the pathogenesis of GDM.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2019/7398063</identifier><identifier>PMID: 30805369</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>1-Phosphatidylinositol 3-kinase ; Adult ; Asians - genetics ; Blood Glucose - genetics ; Body mass ; Case-Control Studies ; Control methods ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Diabetes, Gestational - genetics ; Fasting ; Female ; Genes ; Genetic Predisposition to Disease - genetics ; Genotype ; Glucose ; Glucose tolerance ; Glucose Transporter Type 4 - genetics ; Homeostasis ; Humans ; Insulin ; Insulin - genetics ; Insulin resistance ; Insulin Resistance - genetics ; Intracellular Signaling Peptides and Proteins - genetics ; Kinases ; Laboratory testing ; Pathogenesis ; Phosphatidylinositol 3-Kinases - genetics ; Phosphoenolpyruvate Carboxykinase (GTP) - genetics ; Polymorphism, Single Nucleotide - genetics ; Pregnancy ; Proteins ; Regression analysis ; Retinol-Binding Proteins, Plasma - genetics ; Risk ; Signal transduction ; Signal Transduction - genetics ; Signaling ; Single-nucleotide polymorphism ; Vitamin A ; Womens health</subject><ispartof>BioMed research international, 2019-01, Vol.2019 (2019), p.1-9</ispartof><rights>Copyright © 2019 Shimin Hu et al.</rights><rights>Copyright © 2019 Shimin Hu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2019 Shimin Hu et al. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3</citedby><cites>FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3</cites><orcidid>0000-0002-3284-2494 ; 0000-0002-4292-5947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2175234907/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2175234907?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,25734,27905,27906,36993,36994,44571,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30805369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pan, Hai-Feng</contributor><contributor>Hai-Feng Pan</contributor><creatorcontrib>Tan, Hongzhuan</creatorcontrib><creatorcontrib>Yan, Junxia</creatorcontrib><creatorcontrib>Liang, Huiling</creatorcontrib><creatorcontrib>Tian, Zhengwen</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Ma, Shujuan</creatorcontrib><creatorcontrib>Hu, Shimin</creatorcontrib><creatorcontrib>Chen, Mengshi</creatorcontrib><title>Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored whether single nucleotide polymorphisms (SNPs) of these “signalling pathway” genes are associated with gestational diabetes mellitus (GDM). Methods. Case-control studies were conducted to compare GDM and control groups. A total of 334 cases and 367 controls were recruited. Seventeen candidate SNPs of the pathway were selected. Chi-square tests, logistic regression, and linear regression were used to estimate the relationships of SNPs with GDM risk and oral glucose tolerance test (OGTT), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Model-based multifactor dimensionality reduction was used to estimate the adjusted interactions between genes. Regression and interaction analyses were adjusted by maternal age, prepregnancy BMI, and weekly BMI growth. The Bonferroni correction was applied for multiple comparisons. Results. RBP4 rs7091052 was significantly associated with GDM risk. SLC2A4 rs5435, RBP4 rs7091052, PCK1 rs1042531 and rs2236745, and PIK3R1 (coding gene of the PI3K P85 subunit) rs34309 were associated with OGTT, fasting insulin, and HOMA-IR levels in the linear regression analysis. The gene-gene interaction analysis showed that, compared with pregnant women with other genotype combinations, women with SLC2A4 rs5435 (CC/CT), RBP4 rs7091052 (CC), PCK1 rs1042531 (TT/TG) and rs2236745 (TT), and PIK3R1 rs34309 (AA) had lower GDM risk. Conclusion. SLC2A4, RBP4, PCK1, and PIK3R1 genes may be involved in the pathogenesis of GDM.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Adult</subject><subject>Asians - genetics</subject><subject>Blood Glucose - genetics</subject><subject>Body mass</subject><subject>Case-Control Studies</subject><subject>Control methods</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes, Gestational - genetics</subject><subject>Fasting</subject><subject>Female</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genotype</subject><subject>Glucose</subject><subject>Glucose tolerance</subject><subject>Glucose Transporter Type 4 - genetics</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - genetics</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Kinases</subject><subject>Laboratory testing</subject><subject>Pathogenesis</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphoenolpyruvate Carboxykinase (GTP) - genetics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Regression analysis</subject><subject>Retinol-Binding Proteins, Plasma - genetics</subject><subject>Risk</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signaling</subject><subject>Single-nucleotide polymorphism</subject><subject>Vitamin A</subject><subject>Womens health</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkc1v1DAQxS0EolXpjTOyxAWJXeqxEye-IJUApeoiVgXOlu2dEFdJHOKEquKfx8suy8cJH2zL_s2z5z1CHgN7AZDnZ5yBOiuEKpkU98gxF5AtJWRw_7AX4oicxnjD0ihBMiUfkiPBSpYLqY7J92tszeRDHxs_RBpq-nFV8fNsQa9frdO8rq5gQU2_oetLcUUvsEe6Du1dF8ah8bGL9NZPTTqP008Z09LX3licMNL32LZ-miP1PTW0anyPcVs9zLsnH5EHtWkjnu7XE_L57ZtP1bvl6sPFZXW-WrqsgGlZuxqy0pYZVwLQOCytUgqZK1FxsEIokNY4DoUsc2uYBXCWFzzPwaoaUZyQlzvdYbYdbhz202haPYy-M-OdDsbrv2963-gv4ZuWQgqeQRJ4thcYw9c5tao7H13qzvQY5qg5lMn0FIFI6NN_0Jswj8mWLVXkXGSKFYla7Cg3hhhHrA-fAaa3weptsHofbMKf_NnAAf4VYwKe74Dk8cbc-v-Uw8RgbX7TkGwrmPgBjzey-g</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Tan, Hongzhuan</creator><creator>Yan, Junxia</creator><creator>Liang, Huiling</creator><creator>Tian, Zhengwen</creator><creator>Li, Xun</creator><creator>Ma, Shujuan</creator><creator>Hu, Shimin</creator><creator>Chen, Mengshi</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3284-2494</orcidid><orcidid>https://orcid.org/0000-0002-4292-5947</orcidid></search><sort><creationdate>20190101</creationdate><title>Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population</title><author>Tan, Hongzhuan ; Yan, Junxia ; Liang, Huiling ; Tian, Zhengwen ; Li, Xun ; Ma, Shujuan ; Hu, Shimin ; Chen, Mengshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Adult</topic><topic>Asians - genetics</topic><topic>Blood Glucose - genetics</topic><topic>Body mass</topic><topic>Case-Control Studies</topic><topic>Control methods</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes, Gestational - genetics</topic><topic>Fasting</topic><topic>Female</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genotype</topic><topic>Glucose</topic><topic>Glucose tolerance</topic><topic>Glucose Transporter Type 4 - genetics</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - genetics</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Kinases</topic><topic>Laboratory testing</topic><topic>Pathogenesis</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphoenolpyruvate Carboxykinase (GTP) - genetics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Regression analysis</topic><topic>Retinol-Binding Proteins, Plasma - genetics</topic><topic>Risk</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signaling</topic><topic>Single-nucleotide polymorphism</topic><topic>Vitamin A</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Hongzhuan</creatorcontrib><creatorcontrib>Yan, Junxia</creatorcontrib><creatorcontrib>Liang, Huiling</creatorcontrib><creatorcontrib>Tian, Zhengwen</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Ma, Shujuan</creatorcontrib><creatorcontrib>Hu, Shimin</creatorcontrib><creatorcontrib>Chen, Mengshi</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Hongzhuan</au><au>Yan, Junxia</au><au>Liang, Huiling</au><au>Tian, Zhengwen</au><au>Li, Xun</au><au>Ma, Shujuan</au><au>Hu, Shimin</au><au>Chen, Mengshi</au><au>Pan, Hai-Feng</au><au>Hai-Feng Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored whether single nucleotide polymorphisms (SNPs) of these “signalling pathway” genes are associated with gestational diabetes mellitus (GDM). Methods. Case-control studies were conducted to compare GDM and control groups. A total of 334 cases and 367 controls were recruited. Seventeen candidate SNPs of the pathway were selected. Chi-square tests, logistic regression, and linear regression were used to estimate the relationships of SNPs with GDM risk and oral glucose tolerance test (OGTT), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Model-based multifactor dimensionality reduction was used to estimate the adjusted interactions between genes. Regression and interaction analyses were adjusted by maternal age, prepregnancy BMI, and weekly BMI growth. The Bonferroni correction was applied for multiple comparisons. Results. RBP4 rs7091052 was significantly associated with GDM risk. SLC2A4 rs5435, RBP4 rs7091052, PCK1 rs1042531 and rs2236745, and PIK3R1 (coding gene of the PI3K P85 subunit) rs34309 were associated with OGTT, fasting insulin, and HOMA-IR levels in the linear regression analysis. The gene-gene interaction analysis showed that, compared with pregnant women with other genotype combinations, women with SLC2A4 rs5435 (CC/CT), RBP4 rs7091052 (CC), PCK1 rs1042531 (TT/TG) and rs2236745 (TT), and PIK3R1 rs34309 (AA) had lower GDM risk. Conclusion. SLC2A4, RBP4, PCK1, and PIK3R1 genes may be involved in the pathogenesis of GDM.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>30805369</pmid><doi>10.1155/2019/7398063</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3284-2494</orcidid><orcidid>https://orcid.org/0000-0002-4292-5947</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2019-01, Vol.2019 (2019), p.1-9 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6363241 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | 1-Phosphatidylinositol 3-kinase Adult Asians - genetics Blood Glucose - genetics Body mass Case-Control Studies Control methods Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - genetics Diabetes, Gestational - genetics Fasting Female Genes Genetic Predisposition to Disease - genetics Genotype Glucose Glucose tolerance Glucose Transporter Type 4 - genetics Homeostasis Humans Insulin Insulin - genetics Insulin resistance Insulin Resistance - genetics Intracellular Signaling Peptides and Proteins - genetics Kinases Laboratory testing Pathogenesis Phosphatidylinositol 3-Kinases - genetics Phosphoenolpyruvate Carboxykinase (GTP) - genetics Polymorphism, Single Nucleotide - genetics Pregnancy Proteins Regression analysis Retinol-Binding Proteins, Plasma - genetics Risk Signal transduction Signal Transduction - genetics Signaling Single-nucleotide polymorphism Vitamin A Womens health |
title | Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationships%20of%20SLC2A4,%20RBP4,%20PCK1,%20and%20PI3K%20Gene%20Polymorphisms%20with%20Gestational%20Diabetes%20Mellitus%20in%20a%20Chinese%20Population&rft.jtitle=BioMed%20research%20international&rft.au=Tan,%20Hongzhuan&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2019/7398063&rft_dat=%3Cproquest_pubme%3E2186140633%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2175234907&rft_id=info:pmid/30805369&rfr_iscdi=true |