Loading…

Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population

Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2019-01, Vol.2019 (2019), p.1-9
Main Authors: Tan, Hongzhuan, Yan, Junxia, Liang, Huiling, Tian, Zhengwen, Li, Xun, Ma, Shujuan, Hu, Shimin, Chen, Mengshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3
cites cdi_FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3
container_end_page 9
container_issue 2019
container_start_page 1
container_title BioMed research international
container_volume 2019
creator Tan, Hongzhuan
Yan, Junxia
Liang, Huiling
Tian, Zhengwen
Li, Xun
Ma, Shujuan
Hu, Shimin
Chen, Mengshi
description Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored whether single nucleotide polymorphisms (SNPs) of these “signalling pathway” genes are associated with gestational diabetes mellitus (GDM). Methods. Case-control studies were conducted to compare GDM and control groups. A total of 334 cases and 367 controls were recruited. Seventeen candidate SNPs of the pathway were selected. Chi-square tests, logistic regression, and linear regression were used to estimate the relationships of SNPs with GDM risk and oral glucose tolerance test (OGTT), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Model-based multifactor dimensionality reduction was used to estimate the adjusted interactions between genes. Regression and interaction analyses were adjusted by maternal age, prepregnancy BMI, and weekly BMI growth. The Bonferroni correction was applied for multiple comparisons. Results. RBP4 rs7091052 was significantly associated with GDM risk. SLC2A4 rs5435, RBP4 rs7091052, PCK1 rs1042531 and rs2236745, and PIK3R1 (coding gene of the PI3K P85 subunit) rs34309 were associated with OGTT, fasting insulin, and HOMA-IR levels in the linear regression analysis. The gene-gene interaction analysis showed that, compared with pregnant women with other genotype combinations, women with SLC2A4 rs5435 (CC/CT), RBP4 rs7091052 (CC), PCK1 rs1042531 (TT/TG) and rs2236745 (TT), and PIK3R1 rs34309 (AA) had lower GDM risk. Conclusion. SLC2A4, RBP4, PCK1, and PIK3R1 genes may be involved in the pathogenesis of GDM.
doi_str_mv 10.1155/2019/7398063
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6363241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186140633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS0EolXpjTOyxAWJXeqxEye-IJUApeoiVgXOlu2dEFdJHOKEquKfx8suy8cJH2zL_s2z5z1CHgN7AZDnZ5yBOiuEKpkU98gxF5AtJWRw_7AX4oicxnjD0ihBMiUfkiPBSpYLqY7J92tszeRDHxs_RBpq-nFV8fNsQa9frdO8rq5gQU2_oetLcUUvsEe6Du1dF8ah8bGL9NZPTTqP008Z09LX3licMNL32LZ-miP1PTW0anyPcVs9zLsnH5EHtWkjnu7XE_L57ZtP1bvl6sPFZXW-WrqsgGlZuxqy0pYZVwLQOCytUgqZK1FxsEIokNY4DoUsc2uYBXCWFzzPwaoaUZyQlzvdYbYdbhz202haPYy-M-OdDsbrv2963-gv4ZuWQgqeQRJ4thcYw9c5tao7H13qzvQY5qg5lMn0FIFI6NN_0Jswj8mWLVXkXGSKFYla7Cg3hhhHrA-fAaa3weptsHofbMKf_NnAAf4VYwKe74Dk8cbc-v-Uw8RgbX7TkGwrmPgBjzey-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175234907</pqid></control><display><type>article</type><title>Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Tan, Hongzhuan ; Yan, Junxia ; Liang, Huiling ; Tian, Zhengwen ; Li, Xun ; Ma, Shujuan ; Hu, Shimin ; Chen, Mengshi</creator><contributor>Pan, Hai-Feng ; Hai-Feng Pan</contributor><creatorcontrib>Tan, Hongzhuan ; Yan, Junxia ; Liang, Huiling ; Tian, Zhengwen ; Li, Xun ; Ma, Shujuan ; Hu, Shimin ; Chen, Mengshi ; Pan, Hai-Feng ; Hai-Feng Pan</creatorcontrib><description>Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored whether single nucleotide polymorphisms (SNPs) of these “signalling pathway” genes are associated with gestational diabetes mellitus (GDM). Methods. Case-control studies were conducted to compare GDM and control groups. A total of 334 cases and 367 controls were recruited. Seventeen candidate SNPs of the pathway were selected. Chi-square tests, logistic regression, and linear regression were used to estimate the relationships of SNPs with GDM risk and oral glucose tolerance test (OGTT), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Model-based multifactor dimensionality reduction was used to estimate the adjusted interactions between genes. Regression and interaction analyses were adjusted by maternal age, prepregnancy BMI, and weekly BMI growth. The Bonferroni correction was applied for multiple comparisons. Results. RBP4 rs7091052 was significantly associated with GDM risk. SLC2A4 rs5435, RBP4 rs7091052, PCK1 rs1042531 and rs2236745, and PIK3R1 (coding gene of the PI3K P85 subunit) rs34309 were associated with OGTT, fasting insulin, and HOMA-IR levels in the linear regression analysis. The gene-gene interaction analysis showed that, compared with pregnant women with other genotype combinations, women with SLC2A4 rs5435 (CC/CT), RBP4 rs7091052 (CC), PCK1 rs1042531 (TT/TG) and rs2236745 (TT), and PIK3R1 rs34309 (AA) had lower GDM risk. Conclusion. SLC2A4, RBP4, PCK1, and PIK3R1 genes may be involved in the pathogenesis of GDM.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2019/7398063</identifier><identifier>PMID: 30805369</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>1-Phosphatidylinositol 3-kinase ; Adult ; Asians - genetics ; Blood Glucose - genetics ; Body mass ; Case-Control Studies ; Control methods ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Diabetes, Gestational - genetics ; Fasting ; Female ; Genes ; Genetic Predisposition to Disease - genetics ; Genotype ; Glucose ; Glucose tolerance ; Glucose Transporter Type 4 - genetics ; Homeostasis ; Humans ; Insulin ; Insulin - genetics ; Insulin resistance ; Insulin Resistance - genetics ; Intracellular Signaling Peptides and Proteins - genetics ; Kinases ; Laboratory testing ; Pathogenesis ; Phosphatidylinositol 3-Kinases - genetics ; Phosphoenolpyruvate Carboxykinase (GTP) - genetics ; Polymorphism, Single Nucleotide - genetics ; Pregnancy ; Proteins ; Regression analysis ; Retinol-Binding Proteins, Plasma - genetics ; Risk ; Signal transduction ; Signal Transduction - genetics ; Signaling ; Single-nucleotide polymorphism ; Vitamin A ; Womens health</subject><ispartof>BioMed research international, 2019-01, Vol.2019 (2019), p.1-9</ispartof><rights>Copyright © 2019 Shimin Hu et al.</rights><rights>Copyright © 2019 Shimin Hu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2019 Shimin Hu et al. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3</citedby><cites>FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3</cites><orcidid>0000-0002-3284-2494 ; 0000-0002-4292-5947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2175234907/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2175234907?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,25734,27905,27906,36993,36994,44571,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30805369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pan, Hai-Feng</contributor><contributor>Hai-Feng Pan</contributor><creatorcontrib>Tan, Hongzhuan</creatorcontrib><creatorcontrib>Yan, Junxia</creatorcontrib><creatorcontrib>Liang, Huiling</creatorcontrib><creatorcontrib>Tian, Zhengwen</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Ma, Shujuan</creatorcontrib><creatorcontrib>Hu, Shimin</creatorcontrib><creatorcontrib>Chen, Mengshi</creatorcontrib><title>Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored whether single nucleotide polymorphisms (SNPs) of these “signalling pathway” genes are associated with gestational diabetes mellitus (GDM). Methods. Case-control studies were conducted to compare GDM and control groups. A total of 334 cases and 367 controls were recruited. Seventeen candidate SNPs of the pathway were selected. Chi-square tests, logistic regression, and linear regression were used to estimate the relationships of SNPs with GDM risk and oral glucose tolerance test (OGTT), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Model-based multifactor dimensionality reduction was used to estimate the adjusted interactions between genes. Regression and interaction analyses were adjusted by maternal age, prepregnancy BMI, and weekly BMI growth. The Bonferroni correction was applied for multiple comparisons. Results. RBP4 rs7091052 was significantly associated with GDM risk. SLC2A4 rs5435, RBP4 rs7091052, PCK1 rs1042531 and rs2236745, and PIK3R1 (coding gene of the PI3K P85 subunit) rs34309 were associated with OGTT, fasting insulin, and HOMA-IR levels in the linear regression analysis. The gene-gene interaction analysis showed that, compared with pregnant women with other genotype combinations, women with SLC2A4 rs5435 (CC/CT), RBP4 rs7091052 (CC), PCK1 rs1042531 (TT/TG) and rs2236745 (TT), and PIK3R1 rs34309 (AA) had lower GDM risk. Conclusion. SLC2A4, RBP4, PCK1, and PIK3R1 genes may be involved in the pathogenesis of GDM.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Adult</subject><subject>Asians - genetics</subject><subject>Blood Glucose - genetics</subject><subject>Body mass</subject><subject>Case-Control Studies</subject><subject>Control methods</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes, Gestational - genetics</subject><subject>Fasting</subject><subject>Female</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genotype</subject><subject>Glucose</subject><subject>Glucose tolerance</subject><subject>Glucose Transporter Type 4 - genetics</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - genetics</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Kinases</subject><subject>Laboratory testing</subject><subject>Pathogenesis</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphoenolpyruvate Carboxykinase (GTP) - genetics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Regression analysis</subject><subject>Retinol-Binding Proteins, Plasma - genetics</subject><subject>Risk</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signaling</subject><subject>Single-nucleotide polymorphism</subject><subject>Vitamin A</subject><subject>Womens health</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkc1v1DAQxS0EolXpjTOyxAWJXeqxEye-IJUApeoiVgXOlu2dEFdJHOKEquKfx8suy8cJH2zL_s2z5z1CHgN7AZDnZ5yBOiuEKpkU98gxF5AtJWRw_7AX4oicxnjD0ihBMiUfkiPBSpYLqY7J92tszeRDHxs_RBpq-nFV8fNsQa9frdO8rq5gQU2_oetLcUUvsEe6Du1dF8ah8bGL9NZPTTqP008Z09LX3licMNL32LZ-miP1PTW0anyPcVs9zLsnH5EHtWkjnu7XE_L57ZtP1bvl6sPFZXW-WrqsgGlZuxqy0pYZVwLQOCytUgqZK1FxsEIokNY4DoUsc2uYBXCWFzzPwaoaUZyQlzvdYbYdbhz202haPYy-M-OdDsbrv2963-gv4ZuWQgqeQRJ4thcYw9c5tao7H13qzvQY5qg5lMn0FIFI6NN_0Jswj8mWLVXkXGSKFYla7Cg3hhhHrA-fAaa3weptsHofbMKf_NnAAf4VYwKe74Dk8cbc-v-Uw8RgbX7TkGwrmPgBjzey-g</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Tan, Hongzhuan</creator><creator>Yan, Junxia</creator><creator>Liang, Huiling</creator><creator>Tian, Zhengwen</creator><creator>Li, Xun</creator><creator>Ma, Shujuan</creator><creator>Hu, Shimin</creator><creator>Chen, Mengshi</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3284-2494</orcidid><orcidid>https://orcid.org/0000-0002-4292-5947</orcidid></search><sort><creationdate>20190101</creationdate><title>Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population</title><author>Tan, Hongzhuan ; Yan, Junxia ; Liang, Huiling ; Tian, Zhengwen ; Li, Xun ; Ma, Shujuan ; Hu, Shimin ; Chen, Mengshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Adult</topic><topic>Asians - genetics</topic><topic>Blood Glucose - genetics</topic><topic>Body mass</topic><topic>Case-Control Studies</topic><topic>Control methods</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes, Gestational - genetics</topic><topic>Fasting</topic><topic>Female</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genotype</topic><topic>Glucose</topic><topic>Glucose tolerance</topic><topic>Glucose Transporter Type 4 - genetics</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - genetics</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Kinases</topic><topic>Laboratory testing</topic><topic>Pathogenesis</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphoenolpyruvate Carboxykinase (GTP) - genetics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Regression analysis</topic><topic>Retinol-Binding Proteins, Plasma - genetics</topic><topic>Risk</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signaling</topic><topic>Single-nucleotide polymorphism</topic><topic>Vitamin A</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Hongzhuan</creatorcontrib><creatorcontrib>Yan, Junxia</creatorcontrib><creatorcontrib>Liang, Huiling</creatorcontrib><creatorcontrib>Tian, Zhengwen</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Ma, Shujuan</creatorcontrib><creatorcontrib>Hu, Shimin</creatorcontrib><creatorcontrib>Chen, Mengshi</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Hongzhuan</au><au>Yan, Junxia</au><au>Liang, Huiling</au><au>Tian, Zhengwen</au><au>Li, Xun</au><au>Ma, Shujuan</au><au>Hu, Shimin</au><au>Chen, Mengshi</au><au>Pan, Hai-Feng</au><au>Hai-Feng Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase 1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). We explored whether single nucleotide polymorphisms (SNPs) of these “signalling pathway” genes are associated with gestational diabetes mellitus (GDM). Methods. Case-control studies were conducted to compare GDM and control groups. A total of 334 cases and 367 controls were recruited. Seventeen candidate SNPs of the pathway were selected. Chi-square tests, logistic regression, and linear regression were used to estimate the relationships of SNPs with GDM risk and oral glucose tolerance test (OGTT), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Model-based multifactor dimensionality reduction was used to estimate the adjusted interactions between genes. Regression and interaction analyses were adjusted by maternal age, prepregnancy BMI, and weekly BMI growth. The Bonferroni correction was applied for multiple comparisons. Results. RBP4 rs7091052 was significantly associated with GDM risk. SLC2A4 rs5435, RBP4 rs7091052, PCK1 rs1042531 and rs2236745, and PIK3R1 (coding gene of the PI3K P85 subunit) rs34309 were associated with OGTT, fasting insulin, and HOMA-IR levels in the linear regression analysis. The gene-gene interaction analysis showed that, compared with pregnant women with other genotype combinations, women with SLC2A4 rs5435 (CC/CT), RBP4 rs7091052 (CC), PCK1 rs1042531 (TT/TG) and rs2236745 (TT), and PIK3R1 rs34309 (AA) had lower GDM risk. Conclusion. SLC2A4, RBP4, PCK1, and PIK3R1 genes may be involved in the pathogenesis of GDM.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>30805369</pmid><doi>10.1155/2019/7398063</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3284-2494</orcidid><orcidid>https://orcid.org/0000-0002-4292-5947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2019-01, Vol.2019 (2019), p.1-9
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6363241
source Publicly Available Content Database; Wiley Open Access
subjects 1-Phosphatidylinositol 3-kinase
Adult
Asians - genetics
Blood Glucose - genetics
Body mass
Case-Control Studies
Control methods
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - genetics
Diabetes, Gestational - genetics
Fasting
Female
Genes
Genetic Predisposition to Disease - genetics
Genotype
Glucose
Glucose tolerance
Glucose Transporter Type 4 - genetics
Homeostasis
Humans
Insulin
Insulin - genetics
Insulin resistance
Insulin Resistance - genetics
Intracellular Signaling Peptides and Proteins - genetics
Kinases
Laboratory testing
Pathogenesis
Phosphatidylinositol 3-Kinases - genetics
Phosphoenolpyruvate Carboxykinase (GTP) - genetics
Polymorphism, Single Nucleotide - genetics
Pregnancy
Proteins
Regression analysis
Retinol-Binding Proteins, Plasma - genetics
Risk
Signal transduction
Signal Transduction - genetics
Signaling
Single-nucleotide polymorphism
Vitamin A
Womens health
title Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationships%20of%20SLC2A4,%20RBP4,%20PCK1,%20and%20PI3K%20Gene%20Polymorphisms%20with%20Gestational%20Diabetes%20Mellitus%20in%20a%20Chinese%20Population&rft.jtitle=BioMed%20research%20international&rft.au=Tan,%20Hongzhuan&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2019/7398063&rft_dat=%3Cproquest_pubme%3E2186140633%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-fcf148b842931eace8b999e0c8e921b33916bac217685ba0b11cb272551b9fee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2175234907&rft_id=info:pmid/30805369&rfr_iscdi=true