Loading…
Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability
phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia wi...
Saved in:
Published in: | The Journal of biological chemistry 2019-02, Vol.294 (5), p.1490-1501 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3 |
container_end_page | 1501 |
container_issue | 5 |
container_start_page | 1490 |
container_title | The Journal of biological chemistry |
container_volume | 294 |
creator | Cornell, Rosemary B. Taneva, Svetla G. Dennis, Melissa K. Tse, Ronnie Dhillon, Randeep K. Lee, Jaeyong |
description | phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme’s response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα. |
doi_str_mv | 10.1074/jbc.RA118.006457 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6364779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820364607</els_id><sourcerecordid>2158246559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3</originalsourceid><addsrcrecordid>eNp1kU-L1TAUxYMozpvRvSvJ0k2f-dO_LoTh6agwIMgI7kJ6czvN2DY1SR_Wb-UX8TMZ7TjowmwCJ79zbriHkCec7Tmr8uc3Lew_nHNe7xkr86K6R3ac1TKTBf90n-wYEzxrRFGfkNMQblg6ecMfkhPJiqIRjdiRr69sQB0wG-z0GQ0dl6ijdVOgdqKxRzr3Lsx90sw6QO8ShtTj9TLo6PxKcfq2jkgPh6sf36kdZ239piUHUA3RHm1cqZ4M7dxgaIi6tUOSHpEHnR4CPr69z8jHi9dXh7fZ5fs37w7nlxnIqopZBU0BopMtgwpKhK6ROUompWiMyE2jq7bNGUCHnHdayBKgkLLmLTdcYkLPyMstd17aEQ3gFL0e1OztqP2qnLbq35fJ9uraHVUpy7yqmhTw7DbAuy8LhqhGGwCHQU_olqAEL2qRl2mhCWUbCt6F4LG7G8OZ-lWYSoWp34WprbBkefr39-4MfxpKwIsNwLSko0WvAlicAI31CFEZZ_-f_hNQs6rY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158246559</pqid></control><display><type>article</type><title>Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Cornell, Rosemary B. ; Taneva, Svetla G. ; Dennis, Melissa K. ; Tse, Ronnie ; Dhillon, Randeep K. ; Lee, Jaeyong</creator><creatorcontrib>Cornell, Rosemary B. ; Taneva, Svetla G. ; Dennis, Melissa K. ; Tse, Ronnie ; Dhillon, Randeep K. ; Lee, Jaeyong</creatorcontrib><description>phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme’s response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.006457</identifier><identifier>PMID: 30559292</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Catalysis ; Catalytic Domain ; Chlorocebus aethiops ; Choline-Phosphate Cytidylyltransferase - chemistry ; Choline-Phosphate Cytidylyltransferase - genetics ; Choline-Phosphate Cytidylyltransferase - metabolism ; COS Cells ; Crystallography, X-Ray ; enzyme catalysis ; Humans ; lipodystrophy ; Lipodystrophy - genetics ; Lipodystrophy - pathology ; Molecular Bases of Disease ; mutant ; Mutation ; Osteochondrodysplasias - genetics ; Osteochondrodysplasias - pathology ; PCYT1A ; phosphatidylcholine ; Phosphatidylcholines - metabolism ; Protein Binding ; Protein Folding ; Protein Stability ; Retinal Dystrophies - genetics ; Retinal Dystrophies - pathology ; retinal dystrophy ; Retinitis Pigmentosa - genetics ; Retinitis Pigmentosa - pathology ; Spondylometaphyseal dysplasia</subject><ispartof>The Journal of biological chemistry, 2019-02, Vol.294 (5), p.1490-1501</ispartof><rights>2019 © 2019 Cornell et al.</rights><rights>2019 Cornell et al.</rights><rights>2019 Cornell et al. 2019 Cornell et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3</citedby><cites>FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364779/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820364607$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30559292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornell, Rosemary B.</creatorcontrib><creatorcontrib>Taneva, Svetla G.</creatorcontrib><creatorcontrib>Dennis, Melissa K.</creatorcontrib><creatorcontrib>Tse, Ronnie</creatorcontrib><creatorcontrib>Dhillon, Randeep K.</creatorcontrib><creatorcontrib>Lee, Jaeyong</creatorcontrib><title>Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme’s response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.</description><subject>Animals</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Chlorocebus aethiops</subject><subject>Choline-Phosphate Cytidylyltransferase - chemistry</subject><subject>Choline-Phosphate Cytidylyltransferase - genetics</subject><subject>Choline-Phosphate Cytidylyltransferase - metabolism</subject><subject>COS Cells</subject><subject>Crystallography, X-Ray</subject><subject>enzyme catalysis</subject><subject>Humans</subject><subject>lipodystrophy</subject><subject>Lipodystrophy - genetics</subject><subject>Lipodystrophy - pathology</subject><subject>Molecular Bases of Disease</subject><subject>mutant</subject><subject>Mutation</subject><subject>Osteochondrodysplasias - genetics</subject><subject>Osteochondrodysplasias - pathology</subject><subject>PCYT1A</subject><subject>phosphatidylcholine</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Stability</subject><subject>Retinal Dystrophies - genetics</subject><subject>Retinal Dystrophies - pathology</subject><subject>retinal dystrophy</subject><subject>Retinitis Pigmentosa - genetics</subject><subject>Retinitis Pigmentosa - pathology</subject><subject>Spondylometaphyseal dysplasia</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU-L1TAUxYMozpvRvSvJ0k2f-dO_LoTh6agwIMgI7kJ6czvN2DY1SR_Wb-UX8TMZ7TjowmwCJ79zbriHkCec7Tmr8uc3Lew_nHNe7xkr86K6R3ac1TKTBf90n-wYEzxrRFGfkNMQblg6ecMfkhPJiqIRjdiRr69sQB0wG-z0GQ0dl6ijdVOgdqKxRzr3Lsx90sw6QO8ShtTj9TLo6PxKcfq2jkgPh6sf36kdZ239piUHUA3RHm1cqZ4M7dxgaIi6tUOSHpEHnR4CPr69z8jHi9dXh7fZ5fs37w7nlxnIqopZBU0BopMtgwpKhK6ROUompWiMyE2jq7bNGUCHnHdayBKgkLLmLTdcYkLPyMstd17aEQ3gFL0e1OztqP2qnLbq35fJ9uraHVUpy7yqmhTw7DbAuy8LhqhGGwCHQU_olqAEL2qRl2mhCWUbCt6F4LG7G8OZ-lWYSoWp34WprbBkefr39-4MfxpKwIsNwLSko0WvAlicAI31CFEZZ_-f_hNQs6rY</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Cornell, Rosemary B.</creator><creator>Taneva, Svetla G.</creator><creator>Dennis, Melissa K.</creator><creator>Tse, Ronnie</creator><creator>Dhillon, Randeep K.</creator><creator>Lee, Jaeyong</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190201</creationdate><title>Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability</title><author>Cornell, Rosemary B. ; Taneva, Svetla G. ; Dennis, Melissa K. ; Tse, Ronnie ; Dhillon, Randeep K. ; Lee, Jaeyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Chlorocebus aethiops</topic><topic>Choline-Phosphate Cytidylyltransferase - chemistry</topic><topic>Choline-Phosphate Cytidylyltransferase - genetics</topic><topic>Choline-Phosphate Cytidylyltransferase - metabolism</topic><topic>COS Cells</topic><topic>Crystallography, X-Ray</topic><topic>enzyme catalysis</topic><topic>Humans</topic><topic>lipodystrophy</topic><topic>Lipodystrophy - genetics</topic><topic>Lipodystrophy - pathology</topic><topic>Molecular Bases of Disease</topic><topic>mutant</topic><topic>Mutation</topic><topic>Osteochondrodysplasias - genetics</topic><topic>Osteochondrodysplasias - pathology</topic><topic>PCYT1A</topic><topic>phosphatidylcholine</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Stability</topic><topic>Retinal Dystrophies - genetics</topic><topic>Retinal Dystrophies - pathology</topic><topic>retinal dystrophy</topic><topic>Retinitis Pigmentosa - genetics</topic><topic>Retinitis Pigmentosa - pathology</topic><topic>Spondylometaphyseal dysplasia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornell, Rosemary B.</creatorcontrib><creatorcontrib>Taneva, Svetla G.</creatorcontrib><creatorcontrib>Dennis, Melissa K.</creatorcontrib><creatorcontrib>Tse, Ronnie</creatorcontrib><creatorcontrib>Dhillon, Randeep K.</creatorcontrib><creatorcontrib>Lee, Jaeyong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornell, Rosemary B.</au><au>Taneva, Svetla G.</au><au>Dennis, Melissa K.</au><au>Tse, Ronnie</au><au>Dhillon, Randeep K.</au><au>Lee, Jaeyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>294</volume><issue>5</issue><spage>1490</spage><epage>1501</epage><pages>1490-1501</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme’s response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30559292</pmid><doi>10.1074/jbc.RA118.006457</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2019-02, Vol.294 (5), p.1490-1501 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6364779 |
source | ScienceDirect®; PubMed Central |
subjects | Animals Catalysis Catalytic Domain Chlorocebus aethiops Choline-Phosphate Cytidylyltransferase - chemistry Choline-Phosphate Cytidylyltransferase - genetics Choline-Phosphate Cytidylyltransferase - metabolism COS Cells Crystallography, X-Ray enzyme catalysis Humans lipodystrophy Lipodystrophy - genetics Lipodystrophy - pathology Molecular Bases of Disease mutant Mutation Osteochondrodysplasias - genetics Osteochondrodysplasias - pathology PCYT1A phosphatidylcholine Phosphatidylcholines - metabolism Protein Binding Protein Folding Protein Stability Retinal Dystrophies - genetics Retinal Dystrophies - pathology retinal dystrophy Retinitis Pigmentosa - genetics Retinitis Pigmentosa - pathology Spondylometaphyseal dysplasia |
title | Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disease-linked%20mutations%20in%20the%20phosphatidylcholine%20regulatory%20enzyme%20CCT%CE%B1%20impair%20enzymatic%20activity%20and%20fold%20stability&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Cornell,%20Rosemary%20B.&rft.date=2019-02-01&rft.volume=294&rft.issue=5&rft.spage=1490&rft.epage=1501&rft.pages=1490-1501&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.006457&rft_dat=%3Cproquest_pubme%3E2158246559%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2158246559&rft_id=info:pmid/30559292&rfr_iscdi=true |