Loading…

Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability

phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia wi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2019-02, Vol.294 (5), p.1490-1501
Main Authors: Cornell, Rosemary B., Taneva, Svetla G., Dennis, Melissa K., Tse, Ronnie, Dhillon, Randeep K., Lee, Jaeyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3
cites cdi_FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3
container_end_page 1501
container_issue 5
container_start_page 1490
container_title The Journal of biological chemistry
container_volume 294
creator Cornell, Rosemary B.
Taneva, Svetla G.
Dennis, Melissa K.
Tse, Ronnie
Dhillon, Randeep K.
Lee, Jaeyong
description phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme’s response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.
doi_str_mv 10.1074/jbc.RA118.006457
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6364779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820364607</els_id><sourcerecordid>2158246559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3</originalsourceid><addsrcrecordid>eNp1kU-L1TAUxYMozpvRvSvJ0k2f-dO_LoTh6agwIMgI7kJ6czvN2DY1SR_Wb-UX8TMZ7TjowmwCJ79zbriHkCec7Tmr8uc3Lew_nHNe7xkr86K6R3ac1TKTBf90n-wYEzxrRFGfkNMQblg6ecMfkhPJiqIRjdiRr69sQB0wG-z0GQ0dl6ijdVOgdqKxRzr3Lsx90sw6QO8ShtTj9TLo6PxKcfq2jkgPh6sf36kdZ239piUHUA3RHm1cqZ4M7dxgaIi6tUOSHpEHnR4CPr69z8jHi9dXh7fZ5fs37w7nlxnIqopZBU0BopMtgwpKhK6ROUompWiMyE2jq7bNGUCHnHdayBKgkLLmLTdcYkLPyMstd17aEQ3gFL0e1OztqP2qnLbq35fJ9uraHVUpy7yqmhTw7DbAuy8LhqhGGwCHQU_olqAEL2qRl2mhCWUbCt6F4LG7G8OZ-lWYSoWp34WprbBkefr39-4MfxpKwIsNwLSko0WvAlicAI31CFEZZ_-f_hNQs6rY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158246559</pqid></control><display><type>article</type><title>Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Cornell, Rosemary B. ; Taneva, Svetla G. ; Dennis, Melissa K. ; Tse, Ronnie ; Dhillon, Randeep K. ; Lee, Jaeyong</creator><creatorcontrib>Cornell, Rosemary B. ; Taneva, Svetla G. ; Dennis, Melissa K. ; Tse, Ronnie ; Dhillon, Randeep K. ; Lee, Jaeyong</creatorcontrib><description>phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme’s response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.006457</identifier><identifier>PMID: 30559292</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Catalysis ; Catalytic Domain ; Chlorocebus aethiops ; Choline-Phosphate Cytidylyltransferase - chemistry ; Choline-Phosphate Cytidylyltransferase - genetics ; Choline-Phosphate Cytidylyltransferase - metabolism ; COS Cells ; Crystallography, X-Ray ; enzyme catalysis ; Humans ; lipodystrophy ; Lipodystrophy - genetics ; Lipodystrophy - pathology ; Molecular Bases of Disease ; mutant ; Mutation ; Osteochondrodysplasias - genetics ; Osteochondrodysplasias - pathology ; PCYT1A ; phosphatidylcholine ; Phosphatidylcholines - metabolism ; Protein Binding ; Protein Folding ; Protein Stability ; Retinal Dystrophies - genetics ; Retinal Dystrophies - pathology ; retinal dystrophy ; Retinitis Pigmentosa - genetics ; Retinitis Pigmentosa - pathology ; Spondylometaphyseal dysplasia</subject><ispartof>The Journal of biological chemistry, 2019-02, Vol.294 (5), p.1490-1501</ispartof><rights>2019 © 2019 Cornell et al.</rights><rights>2019 Cornell et al.</rights><rights>2019 Cornell et al. 2019 Cornell et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3</citedby><cites>FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364779/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820364607$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30559292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornell, Rosemary B.</creatorcontrib><creatorcontrib>Taneva, Svetla G.</creatorcontrib><creatorcontrib>Dennis, Melissa K.</creatorcontrib><creatorcontrib>Tse, Ronnie</creatorcontrib><creatorcontrib>Dhillon, Randeep K.</creatorcontrib><creatorcontrib>Lee, Jaeyong</creatorcontrib><title>Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme’s response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.</description><subject>Animals</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Chlorocebus aethiops</subject><subject>Choline-Phosphate Cytidylyltransferase - chemistry</subject><subject>Choline-Phosphate Cytidylyltransferase - genetics</subject><subject>Choline-Phosphate Cytidylyltransferase - metabolism</subject><subject>COS Cells</subject><subject>Crystallography, X-Ray</subject><subject>enzyme catalysis</subject><subject>Humans</subject><subject>lipodystrophy</subject><subject>Lipodystrophy - genetics</subject><subject>Lipodystrophy - pathology</subject><subject>Molecular Bases of Disease</subject><subject>mutant</subject><subject>Mutation</subject><subject>Osteochondrodysplasias - genetics</subject><subject>Osteochondrodysplasias - pathology</subject><subject>PCYT1A</subject><subject>phosphatidylcholine</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Stability</subject><subject>Retinal Dystrophies - genetics</subject><subject>Retinal Dystrophies - pathology</subject><subject>retinal dystrophy</subject><subject>Retinitis Pigmentosa - genetics</subject><subject>Retinitis Pigmentosa - pathology</subject><subject>Spondylometaphyseal dysplasia</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU-L1TAUxYMozpvRvSvJ0k2f-dO_LoTh6agwIMgI7kJ6czvN2DY1SR_Wb-UX8TMZ7TjowmwCJ79zbriHkCec7Tmr8uc3Lew_nHNe7xkr86K6R3ac1TKTBf90n-wYEzxrRFGfkNMQblg6ecMfkhPJiqIRjdiRr69sQB0wG-z0GQ0dl6ijdVOgdqKxRzr3Lsx90sw6QO8ShtTj9TLo6PxKcfq2jkgPh6sf36kdZ239piUHUA3RHm1cqZ4M7dxgaIi6tUOSHpEHnR4CPr69z8jHi9dXh7fZ5fs37w7nlxnIqopZBU0BopMtgwpKhK6ROUompWiMyE2jq7bNGUCHnHdayBKgkLLmLTdcYkLPyMstd17aEQ3gFL0e1OztqP2qnLbq35fJ9uraHVUpy7yqmhTw7DbAuy8LhqhGGwCHQU_olqAEL2qRl2mhCWUbCt6F4LG7G8OZ-lWYSoWp34WprbBkefr39-4MfxpKwIsNwLSko0WvAlicAI31CFEZZ_-f_hNQs6rY</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Cornell, Rosemary B.</creator><creator>Taneva, Svetla G.</creator><creator>Dennis, Melissa K.</creator><creator>Tse, Ronnie</creator><creator>Dhillon, Randeep K.</creator><creator>Lee, Jaeyong</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190201</creationdate><title>Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability</title><author>Cornell, Rosemary B. ; Taneva, Svetla G. ; Dennis, Melissa K. ; Tse, Ronnie ; Dhillon, Randeep K. ; Lee, Jaeyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Chlorocebus aethiops</topic><topic>Choline-Phosphate Cytidylyltransferase - chemistry</topic><topic>Choline-Phosphate Cytidylyltransferase - genetics</topic><topic>Choline-Phosphate Cytidylyltransferase - metabolism</topic><topic>COS Cells</topic><topic>Crystallography, X-Ray</topic><topic>enzyme catalysis</topic><topic>Humans</topic><topic>lipodystrophy</topic><topic>Lipodystrophy - genetics</topic><topic>Lipodystrophy - pathology</topic><topic>Molecular Bases of Disease</topic><topic>mutant</topic><topic>Mutation</topic><topic>Osteochondrodysplasias - genetics</topic><topic>Osteochondrodysplasias - pathology</topic><topic>PCYT1A</topic><topic>phosphatidylcholine</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Stability</topic><topic>Retinal Dystrophies - genetics</topic><topic>Retinal Dystrophies - pathology</topic><topic>retinal dystrophy</topic><topic>Retinitis Pigmentosa - genetics</topic><topic>Retinitis Pigmentosa - pathology</topic><topic>Spondylometaphyseal dysplasia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornell, Rosemary B.</creatorcontrib><creatorcontrib>Taneva, Svetla G.</creatorcontrib><creatorcontrib>Dennis, Melissa K.</creatorcontrib><creatorcontrib>Tse, Ronnie</creatorcontrib><creatorcontrib>Dhillon, Randeep K.</creatorcontrib><creatorcontrib>Lee, Jaeyong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornell, Rosemary B.</au><au>Taneva, Svetla G.</au><au>Dennis, Melissa K.</au><au>Tse, Ronnie</au><au>Dhillon, Randeep K.</au><au>Lee, Jaeyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>294</volume><issue>5</issue><spage>1490</spage><epage>1501</epage><pages>1490-1501</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme’s response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30559292</pmid><doi>10.1074/jbc.RA118.006457</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2019-02, Vol.294 (5), p.1490-1501
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6364779
source ScienceDirect®; PubMed Central
subjects Animals
Catalysis
Catalytic Domain
Chlorocebus aethiops
Choline-Phosphate Cytidylyltransferase - chemistry
Choline-Phosphate Cytidylyltransferase - genetics
Choline-Phosphate Cytidylyltransferase - metabolism
COS Cells
Crystallography, X-Ray
enzyme catalysis
Humans
lipodystrophy
Lipodystrophy - genetics
Lipodystrophy - pathology
Molecular Bases of Disease
mutant
Mutation
Osteochondrodysplasias - genetics
Osteochondrodysplasias - pathology
PCYT1A
phosphatidylcholine
Phosphatidylcholines - metabolism
Protein Binding
Protein Folding
Protein Stability
Retinal Dystrophies - genetics
Retinal Dystrophies - pathology
retinal dystrophy
Retinitis Pigmentosa - genetics
Retinitis Pigmentosa - pathology
Spondylometaphyseal dysplasia
title Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disease-linked%20mutations%20in%20the%20phosphatidylcholine%20regulatory%20enzyme%20CCT%CE%B1%20impair%20enzymatic%20activity%20and%20fold%20stability&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Cornell,%20Rosemary%20B.&rft.date=2019-02-01&rft.volume=294&rft.issue=5&rft.spage=1490&rft.epage=1501&rft.pages=1490-1501&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.006457&rft_dat=%3Cproquest_pubme%3E2158246559%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-7c95c2f3b0c7c6ecf934e303329d24d9a7bb40ccfe11fa236cc53381b1d13e4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2158246559&rft_id=info:pmid/30559292&rfr_iscdi=true