Loading…

Effects of confinement, surface-induced orientations and strain on dynamical behaviors of bacteria in thin liquid crystalline films

We report on the organization and dynamics of bacteria (Proteus mirabilis) dispersed within lyotropic liquid crystal (LC) films confined by pairs of surfaces that induce homeotropic (perpendicular) or hybrid (homeotropic and parallel orientations at each surface) anchoring of the LC. By using motile...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2015-01, Vol.11 (34), p.6821-6831
Main Authors: Mushenheim, Peter C, Trivedi, Rishi R, Roy, Susmit Singha, Arnold, Michael S, Weibel, Douglas B, Abbott, Nicholas L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the organization and dynamics of bacteria (Proteus mirabilis) dispersed within lyotropic liquid crystal (LC) films confined by pairs of surfaces that induce homeotropic (perpendicular) or hybrid (homeotropic and parallel orientations at each surface) anchoring of the LC. By using motile vegetative bacteria (3 µm in length) and homeotropically aligned LC films with thicknesses that exceed the length of the rod-shaped cells, a key finding reported in this paper is that elastic torques generated by the LC are sufficiently large to overcome wall-induced hydrodynamic torques acting on the cells, thus leading to LC-guided bacterial motion near surfaces that orient LCs. This result extends to bacteria within LC films with hybrid anchoring, and leads to the observation that asymmetric strain within a hybrid aligned LC rectifies motions of motile cells. In contrast, when the LC film thickness is sufficiently small that confinement prevents alignment of the bacteria cells along a homeotropically aligned LC director (achieved using swarm cells of length 10-60 µm), the bacterial cells propel in directions orthogonal to the director, generating transient distortions in the LC that have striking "comet-like" optical signatures. In this limit, for hybrid LC films, we find LC elastic stresses deform the bodies of swarm cells into bent configurations that follow the LC director, thus unmasking a coupling between bacterial shape and LC strain. Overall, these results provide new insight into the influence of surface-oriented LCs on dynamical bacterial behaviors and hint at novel ways to manipulate bacteria using confined LC phases that are not possible in isotropic solutions.
ISSN:1744-683X
1744-6848
DOI:10.1039/c5sm01489a