Loading…

Handedness modulates proprioceptive drift in the rubber hand illusion

Preference for use of either the left or right hand (‘handedness’) has been linked with modulations of perception and sensory processing—both of space and the body. Here we ask whether multisensory integration of bodily information also varies as a function of handedness. We created a spatial dispar...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 2019-02, Vol.237 (2), p.351-361
Main Authors: Dempsey-Jones, Harriet, Kritikos, Ada
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Preference for use of either the left or right hand (‘handedness’) has been linked with modulations of perception and sensory processing—both of space and the body. Here we ask whether multisensory integration of bodily information also varies as a function of handedness. We created a spatial disparity between visual and somatosensory hand position information using the rubber hand illusion, and use the magnitude of illusory shifts in hand position (proprioceptive ‘drift’) as a tool to probe the weighted integration of multisensory information. First, we found drift was significantly reduced when the illusion was performed on the dominant vs. non-dominant hand. We suggest increased manual dexterity of the dominant hand causes greater representational stability and thus an increased resistance to bias by the illusion induction. Second, drift was generally greatest when the hand was in its habitual action space (i.e., near the shoulder of origin), compared to when it laterally displaced towards, or across the midline. This linear effect, however, was only significant for the dominant hand—in both left- and right-handed groups. Thus, our results reveal patterns of habitual hand action modulate drift both within a hand (drift varies with proximity to action space), and between hands (differences in drift between the dominant and non-dominant hands). In contrast, we were unable to find conclusive evidence to support, or contradict, an overall difference between left- and right-handers in susceptibility to RHI drift (i.e., total drift, collapsed across hand positions). In sum, our results provide evidence that patterns of daily activity—and the subsequent patterns of sensory input—shape multisensory integration across space.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-018-5391-3