Loading…
Serine 195 phosphorylation in the RNA-binding protein Rbm38 increases p63 expression by modulating Rbm38’s interaction with the Ago2–miR203 complex
The p63 transcription factor, a p53 family protein, regulates genes involved in various cellular processes, including cell growth and differentiation. We previously showed that RNA-binding motif protein (Rbm38) is a p63 target and, in turn, regulates p63α mRNA stability by binding to the AU/U-rich e...
Saved in:
Published in: | The Journal of biological chemistry 2019-02, Vol.294 (7), p.2449-2459 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The p63 transcription factor, a p53 family protein, regulates genes involved in various cellular processes, including cell growth and differentiation. We previously showed that RNA-binding motif protein (Rbm38) is a p63 target and, in turn, regulates p63α mRNA stability by binding to the AU/U-rich element in its 3′UTR. Interestingly, Rbm38 can be phosphorylated at serine 195, altering its ability to regulate mRNA translation. However, whether the Ser-195 phosphorylation affects Rbm38’s ability to destabilize p63 mRNA remains unclear. Here, using MCF7 and HaCaT cells, we showed that ectopic expression of phosphomimetic Rbm38-S195D increases, whereas WT Rbm38 and nonphosphorylatable Rbm38-S195A decrease p63α protein and transcript levels. We also found that upon activation of glycogen synthase kinase 3β (GSK3β), phosphorylation of Rbm38 at Ser-195 is increased, enhancing p63α expression in an Rbm38-dependent manner. To confirm this, we generated mouse embryo fibroblasts (MEFs) in which Ser-193 in mouse Rbm38 (equivalent to Ser-195 in human Rbm38) was substituted with aspartic acid (Rbm38S193D/S193D) or alanine (Rbm38S193A/S193A). We observed that the p63 transcript level was increased in Rbm38S193D/S193D MEFs, but decreased in Rbm38S193A/S193A MEFs. Mechanistically, we found that WT Rbm38, but not Rbm38-S195D, is required for p63 mRNA degradation mediated by microRNA 203 (miR203). Furthermore, we noted that Argonaute 2 (Ago2), a key regulator in microRNA-mediated mRNA decay, associates with WT Rbm38, and this association was reduced by Ser-195 phosphorylation. Together, our results reveal a critical mechanism by which Ser-195 phosphorylation in Rbm38 increases p63 expression by attenuating the association of Rbm38 with the Ago2–miR203 complex. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.RA118.005779 |