Loading…

Real time observation of binder jetting printing process using high-speed X-ray imaging

A high-speed synchrotron X-ray imaging technique was used to investigate the binder jetting additive manufacturing (AM) process. A commercial binder jetting printer with droplet-on-demand ink-jet print-head was used to print single lines on powder beds. The printing process was recorded in real time...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-02, Vol.9 (1), p.2499-2499, Article 2499
Main Authors: Parab, Niranjan D., Barnes, John E., Zhao, Cang, Cunningham, Ross W., Fezzaa, Kamel, Rollett, Anthony D., Sun, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c549t-993d9a7424c6f735ab18a919c24433566284d1748c0fffa876fd1c8077c1e4c73
cites cdi_FETCH-LOGICAL-c549t-993d9a7424c6f735ab18a919c24433566284d1748c0fffa876fd1c8077c1e4c73
container_end_page 2499
container_issue 1
container_start_page 2499
container_title Scientific reports
container_volume 9
creator Parab, Niranjan D.
Barnes, John E.
Zhao, Cang
Cunningham, Ross W.
Fezzaa, Kamel
Rollett, Anthony D.
Sun, Tao
description A high-speed synchrotron X-ray imaging technique was used to investigate the binder jetting additive manufacturing (AM) process. A commercial binder jetting printer with droplet-on-demand ink-jet print-head was used to print single lines on powder beds. The printing process was recorded in real time using high-speed X-ray imaging. The ink-jet droplets showed distinct elongated shape with spherical head, long tail, and three to five trailing satellite droplets. Significant drift was observed between the impact points of main droplet and satellite droplets. The impact of the droplet on the powder bed caused movement and ejection of the powder particles. The depth of disturbance in the powder bed from movement and ejection was defined as interaction depth, which is found to be dependent on the size, shape, and material of the powder particles. For smaller powder particles (diameter less than 10  μ m), three consecutive binder droplets were observed to coalesce to form large agglomerates. The observations reported here will facilitate the understanding of underlying physics that govern the binder jetting processes, which will then help in improving the quality of parts manufactured using this AM process.
doi_str_mv 10.1038/s41598-019-38862-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6385361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2185562683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-993d9a7424c6f735ab18a919c24433566284d1748c0fffa876fd1c8077c1e4c73</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiNERavSP8ABRXDhEvD3xwUJVYVWqlSpAsHN8jqTrFeJvdhOpf57ErK0hQO-eEbzzjtjP1X1CqP3GFH1ITPMtWoQ1g1VSpBGPqtOCGK8IZSQ50_i4-os5x2aDyeaYf2iOqZIasI4O6m-34Id6uJHqOMmQ7qzxcdQx67e-NBCqndQig99vU8-HILoIOd6yku29f22yXuAtv7RJHtf-9H2c-FlddTZIcPZ4T6tvn2--Hp-2VzffLk6_3TdOM50abSmrbaSEeZEJym3G6ysxtoRxijlQhDFWiyZcqjrOquk6FrsFJLSYWBO0tPq4-q7nzYjtA5CSXYw87ajTfcmWm_-rgS_NX28M4IqTgWeDd6sBjEXb7LzBdzWxRDAFYOZFoosU94dpqT4c4JczOizg2GwAeKUDcGKc0GEorP07T_SXZxSmP9gUTGOCdWLIVlVLsWcE3QPG2NkFr5m5WtmvuY3X7M0vX761oeWPzRnAV0FeaHVQ3qc_R_bX1HUsB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184512397</pqid></control><display><type>article</type><title>Real time observation of binder jetting printing process using high-speed X-ray imaging</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Parab, Niranjan D. ; Barnes, John E. ; Zhao, Cang ; Cunningham, Ross W. ; Fezzaa, Kamel ; Rollett, Anthony D. ; Sun, Tao</creator><creatorcontrib>Parab, Niranjan D. ; Barnes, John E. ; Zhao, Cang ; Cunningham, Ross W. ; Fezzaa, Kamel ; Rollett, Anthony D. ; Sun, Tao ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>A high-speed synchrotron X-ray imaging technique was used to investigate the binder jetting additive manufacturing (AM) process. A commercial binder jetting printer with droplet-on-demand ink-jet print-head was used to print single lines on powder beds. The printing process was recorded in real time using high-speed X-ray imaging. The ink-jet droplets showed distinct elongated shape with spherical head, long tail, and three to five trailing satellite droplets. Significant drift was observed between the impact points of main droplet and satellite droplets. The impact of the droplet on the powder bed caused movement and ejection of the powder particles. The depth of disturbance in the powder bed from movement and ejection was defined as interaction depth, which is found to be dependent on the size, shape, and material of the powder particles. For smaller powder particles (diameter less than 10  μ m), three consecutive binder droplets were observed to coalesce to form large agglomerates. The observations reported here will facilitate the understanding of underlying physics that govern the binder jetting processes, which will then help in improving the quality of parts manufactured using this AM process.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-38862-7</identifier><identifier>PMID: 30792454</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/984 ; 639/166/988 ; 639/301/1023/1024 ; 639/301/1023/1026 ; ENGINEERING ; Humanities and Social Sciences ; multidisciplinary ; Powder ; Rapid prototyping ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-02, Vol.9 (1), p.2499-2499, Article 2499</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-993d9a7424c6f735ab18a919c24433566284d1748c0fffa876fd1c8077c1e4c73</citedby><cites>FETCH-LOGICAL-c549t-993d9a7424c6f735ab18a919c24433566284d1748c0fffa876fd1c8077c1e4c73</cites><orcidid>0000-0002-4436-5146 ; 0000-0002-2464-2409 ; 0000-0002-4881-9774 ; 0000000248819774 ; 0000000224642409 ; 0000000244365146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2184512397/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2184512397?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30792454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1496827$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Parab, Niranjan D.</creatorcontrib><creatorcontrib>Barnes, John E.</creatorcontrib><creatorcontrib>Zhao, Cang</creatorcontrib><creatorcontrib>Cunningham, Ross W.</creatorcontrib><creatorcontrib>Fezzaa, Kamel</creatorcontrib><creatorcontrib>Rollett, Anthony D.</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Real time observation of binder jetting printing process using high-speed X-ray imaging</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A high-speed synchrotron X-ray imaging technique was used to investigate the binder jetting additive manufacturing (AM) process. A commercial binder jetting printer with droplet-on-demand ink-jet print-head was used to print single lines on powder beds. The printing process was recorded in real time using high-speed X-ray imaging. The ink-jet droplets showed distinct elongated shape with spherical head, long tail, and three to five trailing satellite droplets. Significant drift was observed between the impact points of main droplet and satellite droplets. The impact of the droplet on the powder bed caused movement and ejection of the powder particles. The depth of disturbance in the powder bed from movement and ejection was defined as interaction depth, which is found to be dependent on the size, shape, and material of the powder particles. For smaller powder particles (diameter less than 10  μ m), three consecutive binder droplets were observed to coalesce to form large agglomerates. The observations reported here will facilitate the understanding of underlying physics that govern the binder jetting processes, which will then help in improving the quality of parts manufactured using this AM process.</description><subject>639/166/984</subject><subject>639/166/988</subject><subject>639/301/1023/1024</subject><subject>639/301/1023/1026</subject><subject>ENGINEERING</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Powder</subject><subject>Rapid prototyping</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1v1DAQhiNERavSP8ABRXDhEvD3xwUJVYVWqlSpAsHN8jqTrFeJvdhOpf57ErK0hQO-eEbzzjtjP1X1CqP3GFH1ITPMtWoQ1g1VSpBGPqtOCGK8IZSQ50_i4-os5x2aDyeaYf2iOqZIasI4O6m-34Id6uJHqOMmQ7qzxcdQx67e-NBCqndQig99vU8-HILoIOd6yku29f22yXuAtv7RJHtf-9H2c-FlddTZIcPZ4T6tvn2--Hp-2VzffLk6_3TdOM50abSmrbaSEeZEJym3G6ysxtoRxijlQhDFWiyZcqjrOquk6FrsFJLSYWBO0tPq4-q7nzYjtA5CSXYw87ajTfcmWm_-rgS_NX28M4IqTgWeDd6sBjEXb7LzBdzWxRDAFYOZFoosU94dpqT4c4JczOizg2GwAeKUDcGKc0GEorP07T_SXZxSmP9gUTGOCdWLIVlVLsWcE3QPG2NkFr5m5WtmvuY3X7M0vX761oeWPzRnAV0FeaHVQ3qc_R_bX1HUsB0</recordid><startdate>20190221</startdate><enddate>20190221</enddate><creator>Parab, Niranjan D.</creator><creator>Barnes, John E.</creator><creator>Zhao, Cang</creator><creator>Cunningham, Ross W.</creator><creator>Fezzaa, Kamel</creator><creator>Rollett, Anthony D.</creator><creator>Sun, Tao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4436-5146</orcidid><orcidid>https://orcid.org/0000-0002-2464-2409</orcidid><orcidid>https://orcid.org/0000-0002-4881-9774</orcidid><orcidid>https://orcid.org/0000000248819774</orcidid><orcidid>https://orcid.org/0000000224642409</orcidid><orcidid>https://orcid.org/0000000244365146</orcidid></search><sort><creationdate>20190221</creationdate><title>Real time observation of binder jetting printing process using high-speed X-ray imaging</title><author>Parab, Niranjan D. ; Barnes, John E. ; Zhao, Cang ; Cunningham, Ross W. ; Fezzaa, Kamel ; Rollett, Anthony D. ; Sun, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-993d9a7424c6f735ab18a919c24433566284d1748c0fffa876fd1c8077c1e4c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166/984</topic><topic>639/166/988</topic><topic>639/301/1023/1024</topic><topic>639/301/1023/1026</topic><topic>ENGINEERING</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Powder</topic><topic>Rapid prototyping</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parab, Niranjan D.</creatorcontrib><creatorcontrib>Barnes, John E.</creatorcontrib><creatorcontrib>Zhao, Cang</creatorcontrib><creatorcontrib>Cunningham, Ross W.</creatorcontrib><creatorcontrib>Fezzaa, Kamel</creatorcontrib><creatorcontrib>Rollett, Anthony D.</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parab, Niranjan D.</au><au>Barnes, John E.</au><au>Zhao, Cang</au><au>Cunningham, Ross W.</au><au>Fezzaa, Kamel</au><au>Rollett, Anthony D.</au><au>Sun, Tao</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real time observation of binder jetting printing process using high-speed X-ray imaging</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-02-21</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>2499</spage><epage>2499</epage><pages>2499-2499</pages><artnum>2499</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A high-speed synchrotron X-ray imaging technique was used to investigate the binder jetting additive manufacturing (AM) process. A commercial binder jetting printer with droplet-on-demand ink-jet print-head was used to print single lines on powder beds. The printing process was recorded in real time using high-speed X-ray imaging. The ink-jet droplets showed distinct elongated shape with spherical head, long tail, and three to five trailing satellite droplets. Significant drift was observed between the impact points of main droplet and satellite droplets. The impact of the droplet on the powder bed caused movement and ejection of the powder particles. The depth of disturbance in the powder bed from movement and ejection was defined as interaction depth, which is found to be dependent on the size, shape, and material of the powder particles. For smaller powder particles (diameter less than 10  μ m), three consecutive binder droplets were observed to coalesce to form large agglomerates. The observations reported here will facilitate the understanding of underlying physics that govern the binder jetting processes, which will then help in improving the quality of parts manufactured using this AM process.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30792454</pmid><doi>10.1038/s41598-019-38862-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4436-5146</orcidid><orcidid>https://orcid.org/0000-0002-2464-2409</orcidid><orcidid>https://orcid.org/0000-0002-4881-9774</orcidid><orcidid>https://orcid.org/0000000248819774</orcidid><orcidid>https://orcid.org/0000000224642409</orcidid><orcidid>https://orcid.org/0000000244365146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-02, Vol.9 (1), p.2499-2499, Article 2499
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6385361
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/984
639/166/988
639/301/1023/1024
639/301/1023/1026
ENGINEERING
Humanities and Social Sciences
multidisciplinary
Powder
Rapid prototyping
Science
Science (multidisciplinary)
title Real time observation of binder jetting printing process using high-speed X-ray imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20time%20observation%20of%20binder%20jetting%20printing%20process%20using%20high-speed%20X-ray%20imaging&rft.jtitle=Scientific%20reports&rft.au=Parab,%20Niranjan%20D.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-02-21&rft.volume=9&rft.issue=1&rft.spage=2499&rft.epage=2499&rft.pages=2499-2499&rft.artnum=2499&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-38862-7&rft_dat=%3Cproquest_pubme%3E2185562683%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-993d9a7424c6f735ab18a919c24433566284d1748c0fffa876fd1c8077c1e4c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2184512397&rft_id=info:pmid/30792454&rfr_iscdi=true