Loading…
Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight
Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied b...
Saved in:
Published in: | Scientific reports 2019-02, Vol.9 (1), p.2827, Article 2827 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93 |
container_end_page | |
container_issue | 1 |
container_start_page | 2827 |
container_title | Scientific reports |
container_volume | 9 |
creator | Bannai, Taro Mano, Tatsuo Chen, Xigui Ohtomo, Gaku Ohtomo, Ryo Tsuchida, Takeyuki Koshi-Mano, Kagari Hashimoto, Tadafumi Okazawa, Hitoshi Iwatsubo, Takeshi Tsuji, Shoji Toda, Tatsushi Iwata, Atsushi |
description | Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied bilateral common carotid artery stenosis (BCAS) to a mice model of AD and evaluated how the equilibrium of amyloid β oligomers respond to hypoperfusion. BCAS accelerated amyloid β (Aβ) convergence to the aggregation seed, facilitating the growth of Aβ plaques, but without changing the total Aβ amount in the brain. Furthermore, Aβ oligomers with high molecular weight increased in the brain of BCAS-operated mice. Considering Aβ is in an equilibrium among monomeric, oligomeric, and aggregation forms, our data suggest that cerebral hypoperfusion after BCAS shifted this equilibrium to a state where a greater number of Aβ molecules participate in Aβ assemblies to form aggregation-prone Aβ oligomers with high molecular weight. The reduced blood flow in the cerebral arteries due to BCAS attenuated the dynamics of the interstitial fluid leading to congestion, which may have facilitated Aβ aggregation. We suggest that cerebral hypoperfusion may accelerate AD by enhancing the tendency of Aβ to become aggregation-prone. |
doi_str_mv | 10.1038/s41598-019-39494-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6391466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186153261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EolXpC7BAltiwCfgvib1BQlf8SZXYwNrydSaJKydO7YTqPgHvw4PwTAy9pRQWeGNr5pszPjqEPOXsJWdSvyqK10ZXjJtKGmVU1T4gp4KpuhJSiIf33ifkvJRLhqcWRnHzmJxIppk2ip2Sb7sxpzl46iHDPrtIx8OSFsj9VkKaaRlDvxa6jkDhagsx7HPYJpp66qZDTKGjP77TFMOQJsjIJeqGIcPgVpyuFtQGWhbwAQq9DutIxzCMkOmUIvgtukyvASvrE_Kod7HA-e19Rr68e_t596G6-PT-4-7NReVVq9aqka1kdc962RmuateyvjFCMzRm9pID1J0T6KxTzHDXmU63XLUaoU5q4Y08I6-Pusu2n6DzMK9o2i45TC4fbHLB_t2Zw2iH9NU2Ehc2DQq8uBXI6WqDstopFA8xuhnSVqzgumlEjfsRff4Pepm2PKO9G4rXUjQcKXGkfE6lZOjvPsOZ_RW1PUZtMWp7E7VtcejZfRt3I7-DRUAegYKteYD8Z_d_ZH8CEMC3ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186153261</pqid></control><display><type>article</type><title>Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bannai, Taro ; Mano, Tatsuo ; Chen, Xigui ; Ohtomo, Gaku ; Ohtomo, Ryo ; Tsuchida, Takeyuki ; Koshi-Mano, Kagari ; Hashimoto, Tadafumi ; Okazawa, Hitoshi ; Iwatsubo, Takeshi ; Tsuji, Shoji ; Toda, Tatsushi ; Iwata, Atsushi</creator><creatorcontrib>Bannai, Taro ; Mano, Tatsuo ; Chen, Xigui ; Ohtomo, Gaku ; Ohtomo, Ryo ; Tsuchida, Takeyuki ; Koshi-Mano, Kagari ; Hashimoto, Tadafumi ; Okazawa, Hitoshi ; Iwatsubo, Takeshi ; Tsuji, Shoji ; Toda, Tatsushi ; Iwata, Atsushi</creatorcontrib><description>Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied bilateral common carotid artery stenosis (BCAS) to a mice model of AD and evaluated how the equilibrium of amyloid β oligomers respond to hypoperfusion. BCAS accelerated amyloid β (Aβ) convergence to the aggregation seed, facilitating the growth of Aβ plaques, but without changing the total Aβ amount in the brain. Furthermore, Aβ oligomers with high molecular weight increased in the brain of BCAS-operated mice. Considering Aβ is in an equilibrium among monomeric, oligomeric, and aggregation forms, our data suggest that cerebral hypoperfusion after BCAS shifted this equilibrium to a state where a greater number of Aβ molecules participate in Aβ assemblies to form aggregation-prone Aβ oligomers with high molecular weight. The reduced blood flow in the cerebral arteries due to BCAS attenuated the dynamics of the interstitial fluid leading to congestion, which may have facilitated Aβ aggregation. We suggest that cerebral hypoperfusion may accelerate AD by enhancing the tendency of Aβ to become aggregation-prone.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-39494-7</identifier><identifier>PMID: 30808940</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/51 ; 59 ; 631/378/1689/1283 ; 64/60 ; 692/699/375/132/1283 ; 82 ; 82/1 ; 82/80 ; Alzheimer Disease - etiology ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Animals ; Arteriosclerosis ; Blood flow ; Brain Ischemia - complications ; Brain Ischemia - metabolism ; Carotid artery ; Carotid Stenosis ; Disease Models, Animal ; Equilibrium ; Humanities and Social Sciences ; Male ; Mice ; Molecular Weight ; multidisciplinary ; Plaque, Amyloid - metabolism ; Risk factors ; Science ; Science (multidisciplinary) ; Senile plaques ; Stenosis</subject><ispartof>Scientific reports, 2019-02, Vol.9 (1), p.2827, Article 2827</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93</citedby><cites>FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93</cites><orcidid>0000-0001-5602-5686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2186153261/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2186153261?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30808940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bannai, Taro</creatorcontrib><creatorcontrib>Mano, Tatsuo</creatorcontrib><creatorcontrib>Chen, Xigui</creatorcontrib><creatorcontrib>Ohtomo, Gaku</creatorcontrib><creatorcontrib>Ohtomo, Ryo</creatorcontrib><creatorcontrib>Tsuchida, Takeyuki</creatorcontrib><creatorcontrib>Koshi-Mano, Kagari</creatorcontrib><creatorcontrib>Hashimoto, Tadafumi</creatorcontrib><creatorcontrib>Okazawa, Hitoshi</creatorcontrib><creatorcontrib>Iwatsubo, Takeshi</creatorcontrib><creatorcontrib>Tsuji, Shoji</creatorcontrib><creatorcontrib>Toda, Tatsushi</creatorcontrib><creatorcontrib>Iwata, Atsushi</creatorcontrib><title>Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied bilateral common carotid artery stenosis (BCAS) to a mice model of AD and evaluated how the equilibrium of amyloid β oligomers respond to hypoperfusion. BCAS accelerated amyloid β (Aβ) convergence to the aggregation seed, facilitating the growth of Aβ plaques, but without changing the total Aβ amount in the brain. Furthermore, Aβ oligomers with high molecular weight increased in the brain of BCAS-operated mice. Considering Aβ is in an equilibrium among monomeric, oligomeric, and aggregation forms, our data suggest that cerebral hypoperfusion after BCAS shifted this equilibrium to a state where a greater number of Aβ molecules participate in Aβ assemblies to form aggregation-prone Aβ oligomers with high molecular weight. The reduced blood flow in the cerebral arteries due to BCAS attenuated the dynamics of the interstitial fluid leading to congestion, which may have facilitated Aβ aggregation. We suggest that cerebral hypoperfusion may accelerate AD by enhancing the tendency of Aβ to become aggregation-prone.</description><subject>13</subject><subject>13/51</subject><subject>59</subject><subject>631/378/1689/1283</subject><subject>64/60</subject><subject>692/699/375/132/1283</subject><subject>82</subject><subject>82/1</subject><subject>82/80</subject><subject>Alzheimer Disease - etiology</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animals</subject><subject>Arteriosclerosis</subject><subject>Blood flow</subject><subject>Brain Ischemia - complications</subject><subject>Brain Ischemia - metabolism</subject><subject>Carotid artery</subject><subject>Carotid Stenosis</subject><subject>Disease Models, Animal</subject><subject>Equilibrium</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular Weight</subject><subject>multidisciplinary</subject><subject>Plaque, Amyloid - metabolism</subject><subject>Risk factors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Senile plaques</subject><subject>Stenosis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc1u1TAQhS0EolXpC7BAltiwCfgvib1BQlf8SZXYwNrydSaJKydO7YTqPgHvw4PwTAy9pRQWeGNr5pszPjqEPOXsJWdSvyqK10ZXjJtKGmVU1T4gp4KpuhJSiIf33ifkvJRLhqcWRnHzmJxIppk2ip2Sb7sxpzl46iHDPrtIx8OSFsj9VkKaaRlDvxa6jkDhagsx7HPYJpp66qZDTKGjP77TFMOQJsjIJeqGIcPgVpyuFtQGWhbwAQq9DutIxzCMkOmUIvgtukyvASvrE_Kod7HA-e19Rr68e_t596G6-PT-4-7NReVVq9aqka1kdc962RmuateyvjFCMzRm9pID1J0T6KxTzHDXmU63XLUaoU5q4Y08I6-Pusu2n6DzMK9o2i45TC4fbHLB_t2Zw2iH9NU2Ehc2DQq8uBXI6WqDstopFA8xuhnSVqzgumlEjfsRff4Pepm2PKO9G4rXUjQcKXGkfE6lZOjvPsOZ_RW1PUZtMWp7E7VtcejZfRt3I7-DRUAegYKteYD8Z_d_ZH8CEMC3ww</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Bannai, Taro</creator><creator>Mano, Tatsuo</creator><creator>Chen, Xigui</creator><creator>Ohtomo, Gaku</creator><creator>Ohtomo, Ryo</creator><creator>Tsuchida, Takeyuki</creator><creator>Koshi-Mano, Kagari</creator><creator>Hashimoto, Tadafumi</creator><creator>Okazawa, Hitoshi</creator><creator>Iwatsubo, Takeshi</creator><creator>Tsuji, Shoji</creator><creator>Toda, Tatsushi</creator><creator>Iwata, Atsushi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5602-5686</orcidid></search><sort><creationdate>20190226</creationdate><title>Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight</title><author>Bannai, Taro ; Mano, Tatsuo ; Chen, Xigui ; Ohtomo, Gaku ; Ohtomo, Ryo ; Tsuchida, Takeyuki ; Koshi-Mano, Kagari ; Hashimoto, Tadafumi ; Okazawa, Hitoshi ; Iwatsubo, Takeshi ; Tsuji, Shoji ; Toda, Tatsushi ; Iwata, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/51</topic><topic>59</topic><topic>631/378/1689/1283</topic><topic>64/60</topic><topic>692/699/375/132/1283</topic><topic>82</topic><topic>82/1</topic><topic>82/80</topic><topic>Alzheimer Disease - etiology</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animals</topic><topic>Arteriosclerosis</topic><topic>Blood flow</topic><topic>Brain Ischemia - complications</topic><topic>Brain Ischemia - metabolism</topic><topic>Carotid artery</topic><topic>Carotid Stenosis</topic><topic>Disease Models, Animal</topic><topic>Equilibrium</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular Weight</topic><topic>multidisciplinary</topic><topic>Plaque, Amyloid - metabolism</topic><topic>Risk factors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Senile plaques</topic><topic>Stenosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bannai, Taro</creatorcontrib><creatorcontrib>Mano, Tatsuo</creatorcontrib><creatorcontrib>Chen, Xigui</creatorcontrib><creatorcontrib>Ohtomo, Gaku</creatorcontrib><creatorcontrib>Ohtomo, Ryo</creatorcontrib><creatorcontrib>Tsuchida, Takeyuki</creatorcontrib><creatorcontrib>Koshi-Mano, Kagari</creatorcontrib><creatorcontrib>Hashimoto, Tadafumi</creatorcontrib><creatorcontrib>Okazawa, Hitoshi</creatorcontrib><creatorcontrib>Iwatsubo, Takeshi</creatorcontrib><creatorcontrib>Tsuji, Shoji</creatorcontrib><creatorcontrib>Toda, Tatsushi</creatorcontrib><creatorcontrib>Iwata, Atsushi</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bannai, Taro</au><au>Mano, Tatsuo</au><au>Chen, Xigui</au><au>Ohtomo, Gaku</au><au>Ohtomo, Ryo</au><au>Tsuchida, Takeyuki</au><au>Koshi-Mano, Kagari</au><au>Hashimoto, Tadafumi</au><au>Okazawa, Hitoshi</au><au>Iwatsubo, Takeshi</au><au>Tsuji, Shoji</au><au>Toda, Tatsushi</au><au>Iwata, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>2827</spage><pages>2827-</pages><artnum>2827</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied bilateral common carotid artery stenosis (BCAS) to a mice model of AD and evaluated how the equilibrium of amyloid β oligomers respond to hypoperfusion. BCAS accelerated amyloid β (Aβ) convergence to the aggregation seed, facilitating the growth of Aβ plaques, but without changing the total Aβ amount in the brain. Furthermore, Aβ oligomers with high molecular weight increased in the brain of BCAS-operated mice. Considering Aβ is in an equilibrium among monomeric, oligomeric, and aggregation forms, our data suggest that cerebral hypoperfusion after BCAS shifted this equilibrium to a state where a greater number of Aβ molecules participate in Aβ assemblies to form aggregation-prone Aβ oligomers with high molecular weight. The reduced blood flow in the cerebral arteries due to BCAS attenuated the dynamics of the interstitial fluid leading to congestion, which may have facilitated Aβ aggregation. We suggest that cerebral hypoperfusion may accelerate AD by enhancing the tendency of Aβ to become aggregation-prone.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30808940</pmid><doi>10.1038/s41598-019-39494-7</doi><orcidid>https://orcid.org/0000-0001-5602-5686</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-02, Vol.9 (1), p.2827, Article 2827 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6391466 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/51 59 631/378/1689/1283 64/60 692/699/375/132/1283 82 82/1 82/80 Alzheimer Disease - etiology Alzheimer Disease - metabolism Alzheimer's disease Amyloid beta-Peptides - chemistry Amyloid beta-Peptides - metabolism Animals Arteriosclerosis Blood flow Brain Ischemia - complications Brain Ischemia - metabolism Carotid artery Carotid Stenosis Disease Models, Animal Equilibrium Humanities and Social Sciences Male Mice Molecular Weight multidisciplinary Plaque, Amyloid - metabolism Risk factors Science Science (multidisciplinary) Senile plaques Stenosis |
title | Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20cerebral%20hypoperfusion%20shifts%20the%20equilibrium%20of%20amyloid%20%CE%B2%20oligomers%20to%20aggregation-prone%20species%20with%20higher%20molecular%20weight&rft.jtitle=Scientific%20reports&rft.au=Bannai,%20Taro&rft.date=2019-02-26&rft.volume=9&rft.issue=1&rft.spage=2827&rft.pages=2827-&rft.artnum=2827&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-39494-7&rft_dat=%3Cproquest_pubme%3E2186153261%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186153261&rft_id=info:pmid/30808940&rfr_iscdi=true |