Loading…

Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight

Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied b...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-02, Vol.9 (1), p.2827, Article 2827
Main Authors: Bannai, Taro, Mano, Tatsuo, Chen, Xigui, Ohtomo, Gaku, Ohtomo, Ryo, Tsuchida, Takeyuki, Koshi-Mano, Kagari, Hashimoto, Tadafumi, Okazawa, Hitoshi, Iwatsubo, Takeshi, Tsuji, Shoji, Toda, Tatsushi, Iwata, Atsushi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93
cites cdi_FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93
container_end_page
container_issue 1
container_start_page 2827
container_title Scientific reports
container_volume 9
creator Bannai, Taro
Mano, Tatsuo
Chen, Xigui
Ohtomo, Gaku
Ohtomo, Ryo
Tsuchida, Takeyuki
Koshi-Mano, Kagari
Hashimoto, Tadafumi
Okazawa, Hitoshi
Iwatsubo, Takeshi
Tsuji, Shoji
Toda, Tatsushi
Iwata, Atsushi
description Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied bilateral common carotid artery stenosis (BCAS) to a mice model of AD and evaluated how the equilibrium of amyloid β oligomers respond to hypoperfusion. BCAS accelerated amyloid β (Aβ) convergence to the aggregation seed, facilitating the growth of Aβ plaques, but without changing the total Aβ amount in the brain. Furthermore, Aβ oligomers with high molecular weight increased in the brain of BCAS-operated mice. Considering Aβ is in an equilibrium among monomeric, oligomeric, and aggregation forms, our data suggest that cerebral hypoperfusion after BCAS shifted this equilibrium to a state where a greater number of Aβ molecules participate in Aβ assemblies to form aggregation-prone Aβ oligomers with high molecular weight. The reduced blood flow in the cerebral arteries due to BCAS attenuated the dynamics of the interstitial fluid leading to congestion, which may have facilitated Aβ aggregation. We suggest that cerebral hypoperfusion may accelerate AD by enhancing the tendency of Aβ to become aggregation-prone.
doi_str_mv 10.1038/s41598-019-39494-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6391466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186153261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EolXpC7BAltiwCfgvib1BQlf8SZXYwNrydSaJKydO7YTqPgHvw4PwTAy9pRQWeGNr5pszPjqEPOXsJWdSvyqK10ZXjJtKGmVU1T4gp4KpuhJSiIf33ifkvJRLhqcWRnHzmJxIppk2ip2Sb7sxpzl46iHDPrtIx8OSFsj9VkKaaRlDvxa6jkDhagsx7HPYJpp66qZDTKGjP77TFMOQJsjIJeqGIcPgVpyuFtQGWhbwAQq9DutIxzCMkOmUIvgtukyvASvrE_Kod7HA-e19Rr68e_t596G6-PT-4-7NReVVq9aqka1kdc962RmuateyvjFCMzRm9pID1J0T6KxTzHDXmU63XLUaoU5q4Y08I6-Pusu2n6DzMK9o2i45TC4fbHLB_t2Zw2iH9NU2Ehc2DQq8uBXI6WqDstopFA8xuhnSVqzgumlEjfsRff4Pepm2PKO9G4rXUjQcKXGkfE6lZOjvPsOZ_RW1PUZtMWp7E7VtcejZfRt3I7-DRUAegYKteYD8Z_d_ZH8CEMC3ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186153261</pqid></control><display><type>article</type><title>Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bannai, Taro ; Mano, Tatsuo ; Chen, Xigui ; Ohtomo, Gaku ; Ohtomo, Ryo ; Tsuchida, Takeyuki ; Koshi-Mano, Kagari ; Hashimoto, Tadafumi ; Okazawa, Hitoshi ; Iwatsubo, Takeshi ; Tsuji, Shoji ; Toda, Tatsushi ; Iwata, Atsushi</creator><creatorcontrib>Bannai, Taro ; Mano, Tatsuo ; Chen, Xigui ; Ohtomo, Gaku ; Ohtomo, Ryo ; Tsuchida, Takeyuki ; Koshi-Mano, Kagari ; Hashimoto, Tadafumi ; Okazawa, Hitoshi ; Iwatsubo, Takeshi ; Tsuji, Shoji ; Toda, Tatsushi ; Iwata, Atsushi</creatorcontrib><description>Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied bilateral common carotid artery stenosis (BCAS) to a mice model of AD and evaluated how the equilibrium of amyloid β oligomers respond to hypoperfusion. BCAS accelerated amyloid β (Aβ) convergence to the aggregation seed, facilitating the growth of Aβ plaques, but without changing the total Aβ amount in the brain. Furthermore, Aβ oligomers with high molecular weight increased in the brain of BCAS-operated mice. Considering Aβ is in an equilibrium among monomeric, oligomeric, and aggregation forms, our data suggest that cerebral hypoperfusion after BCAS shifted this equilibrium to a state where a greater number of Aβ molecules participate in Aβ assemblies to form aggregation-prone Aβ oligomers with high molecular weight. The reduced blood flow in the cerebral arteries due to BCAS attenuated the dynamics of the interstitial fluid leading to congestion, which may have facilitated Aβ aggregation. We suggest that cerebral hypoperfusion may accelerate AD by enhancing the tendency of Aβ to become aggregation-prone.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-39494-7</identifier><identifier>PMID: 30808940</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/51 ; 59 ; 631/378/1689/1283 ; 64/60 ; 692/699/375/132/1283 ; 82 ; 82/1 ; 82/80 ; Alzheimer Disease - etiology ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Animals ; Arteriosclerosis ; Blood flow ; Brain Ischemia - complications ; Brain Ischemia - metabolism ; Carotid artery ; Carotid Stenosis ; Disease Models, Animal ; Equilibrium ; Humanities and Social Sciences ; Male ; Mice ; Molecular Weight ; multidisciplinary ; Plaque, Amyloid - metabolism ; Risk factors ; Science ; Science (multidisciplinary) ; Senile plaques ; Stenosis</subject><ispartof>Scientific reports, 2019-02, Vol.9 (1), p.2827, Article 2827</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93</citedby><cites>FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93</cites><orcidid>0000-0001-5602-5686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2186153261/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2186153261?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30808940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bannai, Taro</creatorcontrib><creatorcontrib>Mano, Tatsuo</creatorcontrib><creatorcontrib>Chen, Xigui</creatorcontrib><creatorcontrib>Ohtomo, Gaku</creatorcontrib><creatorcontrib>Ohtomo, Ryo</creatorcontrib><creatorcontrib>Tsuchida, Takeyuki</creatorcontrib><creatorcontrib>Koshi-Mano, Kagari</creatorcontrib><creatorcontrib>Hashimoto, Tadafumi</creatorcontrib><creatorcontrib>Okazawa, Hitoshi</creatorcontrib><creatorcontrib>Iwatsubo, Takeshi</creatorcontrib><creatorcontrib>Tsuji, Shoji</creatorcontrib><creatorcontrib>Toda, Tatsushi</creatorcontrib><creatorcontrib>Iwata, Atsushi</creatorcontrib><title>Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied bilateral common carotid artery stenosis (BCAS) to a mice model of AD and evaluated how the equilibrium of amyloid β oligomers respond to hypoperfusion. BCAS accelerated amyloid β (Aβ) convergence to the aggregation seed, facilitating the growth of Aβ plaques, but without changing the total Aβ amount in the brain. Furthermore, Aβ oligomers with high molecular weight increased in the brain of BCAS-operated mice. Considering Aβ is in an equilibrium among monomeric, oligomeric, and aggregation forms, our data suggest that cerebral hypoperfusion after BCAS shifted this equilibrium to a state where a greater number of Aβ molecules participate in Aβ assemblies to form aggregation-prone Aβ oligomers with high molecular weight. The reduced blood flow in the cerebral arteries due to BCAS attenuated the dynamics of the interstitial fluid leading to congestion, which may have facilitated Aβ aggregation. We suggest that cerebral hypoperfusion may accelerate AD by enhancing the tendency of Aβ to become aggregation-prone.</description><subject>13</subject><subject>13/51</subject><subject>59</subject><subject>631/378/1689/1283</subject><subject>64/60</subject><subject>692/699/375/132/1283</subject><subject>82</subject><subject>82/1</subject><subject>82/80</subject><subject>Alzheimer Disease - etiology</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animals</subject><subject>Arteriosclerosis</subject><subject>Blood flow</subject><subject>Brain Ischemia - complications</subject><subject>Brain Ischemia - metabolism</subject><subject>Carotid artery</subject><subject>Carotid Stenosis</subject><subject>Disease Models, Animal</subject><subject>Equilibrium</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular Weight</subject><subject>multidisciplinary</subject><subject>Plaque, Amyloid - metabolism</subject><subject>Risk factors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Senile plaques</subject><subject>Stenosis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc1u1TAQhS0EolXpC7BAltiwCfgvib1BQlf8SZXYwNrydSaJKydO7YTqPgHvw4PwTAy9pRQWeGNr5pszPjqEPOXsJWdSvyqK10ZXjJtKGmVU1T4gp4KpuhJSiIf33ifkvJRLhqcWRnHzmJxIppk2ip2Sb7sxpzl46iHDPrtIx8OSFsj9VkKaaRlDvxa6jkDhagsx7HPYJpp66qZDTKGjP77TFMOQJsjIJeqGIcPgVpyuFtQGWhbwAQq9DutIxzCMkOmUIvgtukyvASvrE_Kod7HA-e19Rr68e_t596G6-PT-4-7NReVVq9aqka1kdc962RmuateyvjFCMzRm9pID1J0T6KxTzHDXmU63XLUaoU5q4Y08I6-Pusu2n6DzMK9o2i45TC4fbHLB_t2Zw2iH9NU2Ehc2DQq8uBXI6WqDstopFA8xuhnSVqzgumlEjfsRff4Pepm2PKO9G4rXUjQcKXGkfE6lZOjvPsOZ_RW1PUZtMWp7E7VtcejZfRt3I7-DRUAegYKteYD8Z_d_ZH8CEMC3ww</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Bannai, Taro</creator><creator>Mano, Tatsuo</creator><creator>Chen, Xigui</creator><creator>Ohtomo, Gaku</creator><creator>Ohtomo, Ryo</creator><creator>Tsuchida, Takeyuki</creator><creator>Koshi-Mano, Kagari</creator><creator>Hashimoto, Tadafumi</creator><creator>Okazawa, Hitoshi</creator><creator>Iwatsubo, Takeshi</creator><creator>Tsuji, Shoji</creator><creator>Toda, Tatsushi</creator><creator>Iwata, Atsushi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5602-5686</orcidid></search><sort><creationdate>20190226</creationdate><title>Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight</title><author>Bannai, Taro ; Mano, Tatsuo ; Chen, Xigui ; Ohtomo, Gaku ; Ohtomo, Ryo ; Tsuchida, Takeyuki ; Koshi-Mano, Kagari ; Hashimoto, Tadafumi ; Okazawa, Hitoshi ; Iwatsubo, Takeshi ; Tsuji, Shoji ; Toda, Tatsushi ; Iwata, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/51</topic><topic>59</topic><topic>631/378/1689/1283</topic><topic>64/60</topic><topic>692/699/375/132/1283</topic><topic>82</topic><topic>82/1</topic><topic>82/80</topic><topic>Alzheimer Disease - etiology</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animals</topic><topic>Arteriosclerosis</topic><topic>Blood flow</topic><topic>Brain Ischemia - complications</topic><topic>Brain Ischemia - metabolism</topic><topic>Carotid artery</topic><topic>Carotid Stenosis</topic><topic>Disease Models, Animal</topic><topic>Equilibrium</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular Weight</topic><topic>multidisciplinary</topic><topic>Plaque, Amyloid - metabolism</topic><topic>Risk factors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Senile plaques</topic><topic>Stenosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bannai, Taro</creatorcontrib><creatorcontrib>Mano, Tatsuo</creatorcontrib><creatorcontrib>Chen, Xigui</creatorcontrib><creatorcontrib>Ohtomo, Gaku</creatorcontrib><creatorcontrib>Ohtomo, Ryo</creatorcontrib><creatorcontrib>Tsuchida, Takeyuki</creatorcontrib><creatorcontrib>Koshi-Mano, Kagari</creatorcontrib><creatorcontrib>Hashimoto, Tadafumi</creatorcontrib><creatorcontrib>Okazawa, Hitoshi</creatorcontrib><creatorcontrib>Iwatsubo, Takeshi</creatorcontrib><creatorcontrib>Tsuji, Shoji</creatorcontrib><creatorcontrib>Toda, Tatsushi</creatorcontrib><creatorcontrib>Iwata, Atsushi</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bannai, Taro</au><au>Mano, Tatsuo</au><au>Chen, Xigui</au><au>Ohtomo, Gaku</au><au>Ohtomo, Ryo</au><au>Tsuchida, Takeyuki</au><au>Koshi-Mano, Kagari</au><au>Hashimoto, Tadafumi</au><au>Okazawa, Hitoshi</au><au>Iwatsubo, Takeshi</au><au>Tsuji, Shoji</au><au>Toda, Tatsushi</au><au>Iwata, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>2827</spage><pages>2827-</pages><artnum>2827</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Epidemiological studies have shown that atherosclerotic risk factors accelerate the pathological process underlying Alzheimer’s disease (AD) via chronic cerebral hypoperfusion. In this study, we aimed to clarify the mechanisms by which cerebral hypoperfusion may exacerbate AD pathology. We applied bilateral common carotid artery stenosis (BCAS) to a mice model of AD and evaluated how the equilibrium of amyloid β oligomers respond to hypoperfusion. BCAS accelerated amyloid β (Aβ) convergence to the aggregation seed, facilitating the growth of Aβ plaques, but without changing the total Aβ amount in the brain. Furthermore, Aβ oligomers with high molecular weight increased in the brain of BCAS-operated mice. Considering Aβ is in an equilibrium among monomeric, oligomeric, and aggregation forms, our data suggest that cerebral hypoperfusion after BCAS shifted this equilibrium to a state where a greater number of Aβ molecules participate in Aβ assemblies to form aggregation-prone Aβ oligomers with high molecular weight. The reduced blood flow in the cerebral arteries due to BCAS attenuated the dynamics of the interstitial fluid leading to congestion, which may have facilitated Aβ aggregation. We suggest that cerebral hypoperfusion may accelerate AD by enhancing the tendency of Aβ to become aggregation-prone.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30808940</pmid><doi>10.1038/s41598-019-39494-7</doi><orcidid>https://orcid.org/0000-0001-5602-5686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-02, Vol.9 (1), p.2827, Article 2827
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6391466
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13
13/51
59
631/378/1689/1283
64/60
692/699/375/132/1283
82
82/1
82/80
Alzheimer Disease - etiology
Alzheimer Disease - metabolism
Alzheimer's disease
Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - metabolism
Animals
Arteriosclerosis
Blood flow
Brain Ischemia - complications
Brain Ischemia - metabolism
Carotid artery
Carotid Stenosis
Disease Models, Animal
Equilibrium
Humanities and Social Sciences
Male
Mice
Molecular Weight
multidisciplinary
Plaque, Amyloid - metabolism
Risk factors
Science
Science (multidisciplinary)
Senile plaques
Stenosis
title Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20cerebral%20hypoperfusion%20shifts%20the%20equilibrium%20of%20amyloid%20%CE%B2%20oligomers%20to%20aggregation-prone%20species%20with%20higher%20molecular%20weight&rft.jtitle=Scientific%20reports&rft.au=Bannai,%20Taro&rft.date=2019-02-26&rft.volume=9&rft.issue=1&rft.spage=2827&rft.pages=2827-&rft.artnum=2827&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-39494-7&rft_dat=%3Cproquest_pubme%3E2186153261%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-637305f0f3d9145a70f692802949b31ee5da2894d4091ad9d871478f69d382c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186153261&rft_id=info:pmid/30808940&rfr_iscdi=true