Loading…

The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements

Abstract Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the in...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2019-02, Vol.47 (4), p.1836-1846
Main Authors: Li, Chastity, Danilowicz, Claudia, Tashjian, Tommy F, Godoy, Veronica G, Prévost, Chantal, Prentiss, Mara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3
container_end_page 1846
container_issue 4
container_start_page 1836
container_title Nucleic acids research
container_volume 47
creator Li, Chastity
Danilowicz, Claudia
Tashjian, Tommy F
Godoy, Veronica G
Prévost, Chantal
Prentiss, Mara
description Abstract Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA-RecA filaments, each ssDNA-RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs >20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements.
doi_str_mv 10.1093/nar/gky1252
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gky1252</oup_id><sourcerecordid>2157648007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3</originalsourceid><addsrcrecordid>eNp9kc9rFDEYhoModq2evEtOUpGxX35MMnMR2m21hQVB6tWQZLIz0ZnJmMy07H9vyq7FevAUePN8z8fHi9BrAh8I1Ox01PG0_bkjtKRP0IowQQteC_oUrYBBWRDg1RF6kdIPAMJJyZ-jo5xzToRcoe83ncNTSH72YfRji8MWrzuPc-AS1n0f7hKeM_PV2fP1BZ703N3pHZ4DTss0RZcSTmFwuHVjGLzF0ekY9di6wY1zeomebXWf3KvDe4y-fbq8WV8Vmy-fr9dnm8Jy4HNRNdxxUxlREylBEmrAgTC2MUI0EjhpSlZDaQira2lNQ0A0XEhBtDT5FsuO0ce9d1rM4Bqbd0fdqyn6QcedCtqrxz-j71QbbpVgNaN1lQXv9oLun7Grs426z4AyTrlktySzJ4dlMfxaXJrV4JN1fa9HF5akKCml4BWAzOj7PWpjSCm67YObgLpvT-X21KG9TL_5-4oH9k9dGXi7B8Iy_df0Gz1so4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157648007</pqid></control><display><type>article</type><title>The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements</title><source>Oxford Open</source><source>PubMed Central</source><creator>Li, Chastity ; Danilowicz, Claudia ; Tashjian, Tommy F ; Godoy, Veronica G ; Prévost, Chantal ; Prentiss, Mara</creator><creatorcontrib>Li, Chastity ; Danilowicz, Claudia ; Tashjian, Tommy F ; Godoy, Veronica G ; Prévost, Chantal ; Prentiss, Mara</creatorcontrib><description>Abstract Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA-RecA filaments, each ssDNA-RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs &gt;20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gky1252</identifier><identifier>PMID: 30544167</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Base Sequence ; Biochemistry, Molecular Biology ; Biophysics ; Cellular Biology ; DNA - biosynthesis ; DNA - genetics ; DNA Breaks, Double-Stranded ; DNA Repair - genetics ; DNA Replication - genetics ; DNA, Single-Stranded - genetics ; Escherichia coli - genetics ; Exodeoxyribonuclease V - genetics ; Genome Integrity, Repair and ; Genome, Bacterial - genetics ; Life Sciences ; Molecular biology ; Nucleic Acid Heteroduplexes - genetics ; Rec A Recombinases - genetics ; Recombination, Genetic ; Subcellular Processes</subject><ispartof>Nucleic acids research, 2019-02, Vol.47 (4), p.1836-1846</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3</cites><orcidid>0000-0003-3516-6687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393298/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393298/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30544167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02342473$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chastity</creatorcontrib><creatorcontrib>Danilowicz, Claudia</creatorcontrib><creatorcontrib>Tashjian, Tommy F</creatorcontrib><creatorcontrib>Godoy, Veronica G</creatorcontrib><creatorcontrib>Prévost, Chantal</creatorcontrib><creatorcontrib>Prentiss, Mara</creatorcontrib><title>The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA-RecA filaments, each ssDNA-RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs &gt;20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements.</description><subject>Base Sequence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Cellular Biology</subject><subject>DNA - biosynthesis</subject><subject>DNA - genetics</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair - genetics</subject><subject>DNA Replication - genetics</subject><subject>DNA, Single-Stranded - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Exodeoxyribonuclease V - genetics</subject><subject>Genome Integrity, Repair and</subject><subject>Genome, Bacterial - genetics</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Nucleic Acid Heteroduplexes - genetics</subject><subject>Rec A Recombinases - genetics</subject><subject>Recombination, Genetic</subject><subject>Subcellular Processes</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kc9rFDEYhoModq2evEtOUpGxX35MMnMR2m21hQVB6tWQZLIz0ZnJmMy07H9vyq7FevAUePN8z8fHi9BrAh8I1Ox01PG0_bkjtKRP0IowQQteC_oUrYBBWRDg1RF6kdIPAMJJyZ-jo5xzToRcoe83ncNTSH72YfRji8MWrzuPc-AS1n0f7hKeM_PV2fP1BZ703N3pHZ4DTss0RZcSTmFwuHVjGLzF0ekY9di6wY1zeomebXWf3KvDe4y-fbq8WV8Vmy-fr9dnm8Jy4HNRNdxxUxlREylBEmrAgTC2MUI0EjhpSlZDaQira2lNQ0A0XEhBtDT5FsuO0ce9d1rM4Bqbd0fdqyn6QcedCtqrxz-j71QbbpVgNaN1lQXv9oLun7Grs426z4AyTrlktySzJ4dlMfxaXJrV4JN1fa9HF5akKCml4BWAzOj7PWpjSCm67YObgLpvT-X21KG9TL_5-4oH9k9dGXi7B8Iy_df0Gz1so4w</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Li, Chastity</creator><creator>Danilowicz, Claudia</creator><creator>Tashjian, Tommy F</creator><creator>Godoy, Veronica G</creator><creator>Prévost, Chantal</creator><creator>Prentiss, Mara</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3516-6687</orcidid></search><sort><creationdate>20190228</creationdate><title>The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements</title><author>Li, Chastity ; Danilowicz, Claudia ; Tashjian, Tommy F ; Godoy, Veronica G ; Prévost, Chantal ; Prentiss, Mara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Base Sequence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Cellular Biology</topic><topic>DNA - biosynthesis</topic><topic>DNA - genetics</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair - genetics</topic><topic>DNA Replication - genetics</topic><topic>DNA, Single-Stranded - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Exodeoxyribonuclease V - genetics</topic><topic>Genome Integrity, Repair and</topic><topic>Genome, Bacterial - genetics</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Nucleic Acid Heteroduplexes - genetics</topic><topic>Rec A Recombinases - genetics</topic><topic>Recombination, Genetic</topic><topic>Subcellular Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chastity</creatorcontrib><creatorcontrib>Danilowicz, Claudia</creatorcontrib><creatorcontrib>Tashjian, Tommy F</creatorcontrib><creatorcontrib>Godoy, Veronica G</creatorcontrib><creatorcontrib>Prévost, Chantal</creatorcontrib><creatorcontrib>Prentiss, Mara</creatorcontrib><collection>Oxford Open</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chastity</au><au>Danilowicz, Claudia</au><au>Tashjian, Tommy F</au><au>Godoy, Veronica G</au><au>Prévost, Chantal</au><au>Prentiss, Mara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>47</volume><issue>4</issue><spage>1836</spage><epage>1846</epage><pages>1836-1846</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA-RecA filaments, each ssDNA-RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs &gt;20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30544167</pmid><doi>10.1093/nar/gky1252</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3516-6687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-02, Vol.47 (4), p.1836-1846
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393298
source Oxford Open; PubMed Central
subjects Base Sequence
Biochemistry, Molecular Biology
Biophysics
Cellular Biology
DNA - biosynthesis
DNA - genetics
DNA Breaks, Double-Stranded
DNA Repair - genetics
DNA Replication - genetics
DNA, Single-Stranded - genetics
Escherichia coli - genetics
Exodeoxyribonuclease V - genetics
Genome Integrity, Repair and
Genome, Bacterial - genetics
Life Sciences
Molecular biology
Nucleic Acid Heteroduplexes - genetics
Rec A Recombinases - genetics
Recombination, Genetic
Subcellular Processes
title The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20positioning%20of%20Chi%20sites%20allows%20the%20RecBCD%20pathway%20to%20suppress%20some%20genomic%20rearrangements&rft.jtitle=Nucleic%20acids%20research&rft.au=Li,%20Chastity&rft.date=2019-02-28&rft.volume=47&rft.issue=4&rft.spage=1836&rft.epage=1846&rft.pages=1836-1846&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gky1252&rft_dat=%3Cproquest_pubme%3E2157648007%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157648007&rft_id=info:pmid/30544167&rft_oup_id=10.1093/nar/gky1252&rfr_iscdi=true