Loading…
The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements
Abstract Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the in...
Saved in:
Published in: | Nucleic acids research 2019-02, Vol.47 (4), p.1836-1846 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3 |
container_end_page | 1846 |
container_issue | 4 |
container_start_page | 1836 |
container_title | Nucleic acids research |
container_volume | 47 |
creator | Li, Chastity Danilowicz, Claudia Tashjian, Tommy F Godoy, Veronica G Prévost, Chantal Prentiss, Mara |
description | Abstract
Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA-RecA filaments, each ssDNA-RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs >20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements. |
doi_str_mv | 10.1093/nar/gky1252 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gky1252</oup_id><sourcerecordid>2157648007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3</originalsourceid><addsrcrecordid>eNp9kc9rFDEYhoModq2evEtOUpGxX35MMnMR2m21hQVB6tWQZLIz0ZnJmMy07H9vyq7FevAUePN8z8fHi9BrAh8I1Ox01PG0_bkjtKRP0IowQQteC_oUrYBBWRDg1RF6kdIPAMJJyZ-jo5xzToRcoe83ncNTSH72YfRji8MWrzuPc-AS1n0f7hKeM_PV2fP1BZ703N3pHZ4DTss0RZcSTmFwuHVjGLzF0ekY9di6wY1zeomebXWf3KvDe4y-fbq8WV8Vmy-fr9dnm8Jy4HNRNdxxUxlREylBEmrAgTC2MUI0EjhpSlZDaQira2lNQ0A0XEhBtDT5FsuO0ce9d1rM4Bqbd0fdqyn6QcedCtqrxz-j71QbbpVgNaN1lQXv9oLun7Grs426z4AyTrlktySzJ4dlMfxaXJrV4JN1fa9HF5akKCml4BWAzOj7PWpjSCm67YObgLpvT-X21KG9TL_5-4oH9k9dGXi7B8Iy_df0Gz1so4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157648007</pqid></control><display><type>article</type><title>The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements</title><source>Oxford Open</source><source>PubMed Central</source><creator>Li, Chastity ; Danilowicz, Claudia ; Tashjian, Tommy F ; Godoy, Veronica G ; Prévost, Chantal ; Prentiss, Mara</creator><creatorcontrib>Li, Chastity ; Danilowicz, Claudia ; Tashjian, Tommy F ; Godoy, Veronica G ; Prévost, Chantal ; Prentiss, Mara</creatorcontrib><description>Abstract
Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA-RecA filaments, each ssDNA-RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs >20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gky1252</identifier><identifier>PMID: 30544167</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Base Sequence ; Biochemistry, Molecular Biology ; Biophysics ; Cellular Biology ; DNA - biosynthesis ; DNA - genetics ; DNA Breaks, Double-Stranded ; DNA Repair - genetics ; DNA Replication - genetics ; DNA, Single-Stranded - genetics ; Escherichia coli - genetics ; Exodeoxyribonuclease V - genetics ; Genome Integrity, Repair and ; Genome, Bacterial - genetics ; Life Sciences ; Molecular biology ; Nucleic Acid Heteroduplexes - genetics ; Rec A Recombinases - genetics ; Recombination, Genetic ; Subcellular Processes</subject><ispartof>Nucleic acids research, 2019-02, Vol.47 (4), p.1836-1846</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3</cites><orcidid>0000-0003-3516-6687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393298/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393298/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30544167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02342473$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chastity</creatorcontrib><creatorcontrib>Danilowicz, Claudia</creatorcontrib><creatorcontrib>Tashjian, Tommy F</creatorcontrib><creatorcontrib>Godoy, Veronica G</creatorcontrib><creatorcontrib>Prévost, Chantal</creatorcontrib><creatorcontrib>Prentiss, Mara</creatorcontrib><title>The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA-RecA filaments, each ssDNA-RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs >20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements.</description><subject>Base Sequence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Cellular Biology</subject><subject>DNA - biosynthesis</subject><subject>DNA - genetics</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair - genetics</subject><subject>DNA Replication - genetics</subject><subject>DNA, Single-Stranded - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Exodeoxyribonuclease V - genetics</subject><subject>Genome Integrity, Repair and</subject><subject>Genome, Bacterial - genetics</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Nucleic Acid Heteroduplexes - genetics</subject><subject>Rec A Recombinases - genetics</subject><subject>Recombination, Genetic</subject><subject>Subcellular Processes</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kc9rFDEYhoModq2evEtOUpGxX35MMnMR2m21hQVB6tWQZLIz0ZnJmMy07H9vyq7FevAUePN8z8fHi9BrAh8I1Ox01PG0_bkjtKRP0IowQQteC_oUrYBBWRDg1RF6kdIPAMJJyZ-jo5xzToRcoe83ncNTSH72YfRji8MWrzuPc-AS1n0f7hKeM_PV2fP1BZ703N3pHZ4DTss0RZcSTmFwuHVjGLzF0ekY9di6wY1zeomebXWf3KvDe4y-fbq8WV8Vmy-fr9dnm8Jy4HNRNdxxUxlREylBEmrAgTC2MUI0EjhpSlZDaQira2lNQ0A0XEhBtDT5FsuO0ce9d1rM4Bqbd0fdqyn6QcedCtqrxz-j71QbbpVgNaN1lQXv9oLun7Grs426z4AyTrlktySzJ4dlMfxaXJrV4JN1fa9HF5akKCml4BWAzOj7PWpjSCm67YObgLpvT-X21KG9TL_5-4oH9k9dGXi7B8Iy_df0Gz1so4w</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Li, Chastity</creator><creator>Danilowicz, Claudia</creator><creator>Tashjian, Tommy F</creator><creator>Godoy, Veronica G</creator><creator>Prévost, Chantal</creator><creator>Prentiss, Mara</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3516-6687</orcidid></search><sort><creationdate>20190228</creationdate><title>The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements</title><author>Li, Chastity ; Danilowicz, Claudia ; Tashjian, Tommy F ; Godoy, Veronica G ; Prévost, Chantal ; Prentiss, Mara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Base Sequence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Cellular Biology</topic><topic>DNA - biosynthesis</topic><topic>DNA - genetics</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair - genetics</topic><topic>DNA Replication - genetics</topic><topic>DNA, Single-Stranded - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Exodeoxyribonuclease V - genetics</topic><topic>Genome Integrity, Repair and</topic><topic>Genome, Bacterial - genetics</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Nucleic Acid Heteroduplexes - genetics</topic><topic>Rec A Recombinases - genetics</topic><topic>Recombination, Genetic</topic><topic>Subcellular Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chastity</creatorcontrib><creatorcontrib>Danilowicz, Claudia</creatorcontrib><creatorcontrib>Tashjian, Tommy F</creatorcontrib><creatorcontrib>Godoy, Veronica G</creatorcontrib><creatorcontrib>Prévost, Chantal</creatorcontrib><creatorcontrib>Prentiss, Mara</creatorcontrib><collection>Oxford Open</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chastity</au><au>Danilowicz, Claudia</au><au>Tashjian, Tommy F</au><au>Godoy, Veronica G</au><au>Prévost, Chantal</au><au>Prentiss, Mara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>47</volume><issue>4</issue><spage>1836</spage><epage>1846</epage><pages>1836-1846</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA-RecA filaments, each ssDNA-RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs >20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30544167</pmid><doi>10.1093/nar/gky1252</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3516-6687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2019-02, Vol.47 (4), p.1836-1846 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393298 |
source | Oxford Open; PubMed Central |
subjects | Base Sequence Biochemistry, Molecular Biology Biophysics Cellular Biology DNA - biosynthesis DNA - genetics DNA Breaks, Double-Stranded DNA Repair - genetics DNA Replication - genetics DNA, Single-Stranded - genetics Escherichia coli - genetics Exodeoxyribonuclease V - genetics Genome Integrity, Repair and Genome, Bacterial - genetics Life Sciences Molecular biology Nucleic Acid Heteroduplexes - genetics Rec A Recombinases - genetics Recombination, Genetic Subcellular Processes |
title | The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20positioning%20of%20Chi%20sites%20allows%20the%20RecBCD%20pathway%20to%20suppress%20some%20genomic%20rearrangements&rft.jtitle=Nucleic%20acids%20research&rft.au=Li,%20Chastity&rft.date=2019-02-28&rft.volume=47&rft.issue=4&rft.spage=1836&rft.epage=1846&rft.pages=1836-1846&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gky1252&rft_dat=%3Cproquest_pubme%3E2157648007%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-8d4e4b8b691770712b0e06bcdb66d7041d53905b13997cbd106d46761a7b305c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157648007&rft_id=info:pmid/30544167&rft_oup_id=10.1093/nar/gky1252&rfr_iscdi=true |