Loading…

Combined orbits and clocks from IGS second reprocessing

The Analysis Centers (ACs) of the International GNSS Service (IGS) have reprocessed a large global network of GPS tracking data from 1994.0 until 2014.0 or later. Each AC product time series was extended uniformly till early 2015 using their weekly operational IGS contributions so that the complete...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geodesy 2019-02, Vol.93 (2), p.177-195
Main Author: Griffiths, Jake
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Analysis Centers (ACs) of the International GNSS Service (IGS) have reprocessed a large global network of GPS tracking data from 1994.0 until 2014.0 or later. Each AC product time series was extended uniformly till early 2015 using their weekly operational IGS contributions so that the complete combined product set covers GPS weeks 730 through 1831. Three ACs also included GLONASS data from as early as 2002 but that was insufficient to permit combined GLONASS products. The reprocessed terrestrial frame combination procedures and results have been reported already, and those were incorporated into the ITRF2014 multi-technique global frame released in 2016. This paper describes the orbit and clock submissions and their multi-AC combinations and assessments. These were released to users in early 2017 in time for the adoption of IGS14 for generating the operational IGS products. While the reprocessing goal was to enable homogeneous modeling, consistent with the current operational procedures, to be applied retrospectively to the full history of observation data in order to achieve a more suitable reference for geophysical studies, that objective has only been partially achieved. Ongoing AC analysis changes and a lack of full participation limit the consistency and precision of the finished IG2 products. Quantitative internal measures indicate that the reprocessed orbits are somewhat less precise than current operational orbits or even the later orbits from the first IGS reprocessing campaign. That is even more apparent for the clocks where a lack of robust AC participation means that it was only possible to form combined 5-min clocks but not the 30-s satellite clocks published operationally. Therefore, retrospective precise point positioning solutions by users are not recommended using the orbits and clocks. Nevertheless, the orbits do support long-term stable user solutions when used with network processing with either double differencing or explicit clock estimation. Among the main benefits of the reprocessing effort is a more consistent long product set to analyze for sources of systematic error and accuracy. Work to do that is underway but the reprocessing experience already points to a number of ways future IGS performance and reprocessing campaigns can be improved.
ISSN:0949-7714
1432-1394
DOI:10.1007/s00190-018-1149-8