Loading…
Influencing Early Stages of Neuromuscular Junction Formation through Glycocalyx Engineering
Achieving molecular control over the formation of synaptic contacts in the nervous system can provide important insights into their regulation and can offer means for creating well-defined in vitro systems to evaluate modes of therapeutic intervention. Agrin-induced clustering of acetylcholine recep...
Saved in:
Published in: | ACS chemical neuroscience 2018-12, Vol.9 (12), p.3086-3093 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Achieving molecular control over the formation of synaptic contacts in the nervous system can provide important insights into their regulation and can offer means for creating well-defined in vitro systems to evaluate modes of therapeutic intervention. Agrin-induced clustering of acetylcholine receptors (AChRs) at postsynaptic sites is a hallmark of the formation of the neuromuscular junction, a synapse between motoneurons and muscle cells. In addition to the cognate agrin receptor LRP4 (low-density lipoprotein receptor related protein-4), muscle cell heparan sulfate (HS) glycosaminoglycans (GAGs) have also been proposed to contribute to AChR clustering by acting as agrin co-receptors. Here, we provide direct evidence for the role of HS GAGs in agrin recruitment to the surface of myotubes, as well as their functional contributions toward AChR clustering. We also demonstrate that engineering of the myotube glycocalyx using synthetic HS GAG polymers can replace native HS structures to gain control over agrin-mediated AChR clustering. |
---|---|
ISSN: | 1948-7193 1948-7193 |
DOI: | 10.1021/acschemneuro.8b00295 |