Loading…
Establishment of multiple diagnosis models for colorectal cancer with artificial neural networks
The current study aimed to develop multiple diagnosis models for colorectal cancer (CRC) based on data from The Cancer Genome Atlas database and analysis with artificial neural networks in order to enhance CRC diagnosis methods. A genetic algorithm and mean impact value were used to select genes to...
Saved in:
Published in: | Oncology letters 2019-03, Vol.17 (3), p.3314-3322 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The current study aimed to develop multiple diagnosis models for colorectal cancer (CRC) based on data from The Cancer Genome Atlas database and analysis with artificial neural networks in order to enhance CRC diagnosis methods. A genetic algorithm and mean impact value were used to select genes to be used as numerical encoded parameters to reflect cancer metastasis or aggression. Back propagation and learning vector quantization neural networks were used to build four diagnosis models: Cancer/Normal, M0/M1, carcinoembryonic antigen (CEA) |
---|---|
ISSN: | 1792-1074 1792-1082 |
DOI: | 10.3892/ol.2019.10010 |