Loading…

Single Nucleotide Polymorphisms in β-Carotene Oxygenase 1 are Associated with Plasma Lycopene Responses to a Tomato-Soy Juice Intervention in Men with Prostate Cancer

Human plasma and tissue lycopene concentrations are heterogeneous even when consuming controlled amounts of tomato or lycopene. Our objective is to determine whether single nucleotide polymorphisms (SNPs) in or near known or putative carotenoid metabolism genes [β-carotene 15,15’ monooxygenase 1 (BC...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of nutrition 2019-03, Vol.149 (3), p.381-397
Main Authors: Moran, Nancy E, Thomas-Ahner, Jennifer M, Fleming, Jessica L, McElroy, Joseph P, Mehl, Rebecca, Grainger, Elizabeth M, Riedl, Ken M, Toland, Amanda E, Schwartz, Steven J, Clinton, Steven K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human plasma and tissue lycopene concentrations are heterogeneous even when consuming controlled amounts of tomato or lycopene. Our objective is to determine whether single nucleotide polymorphisms (SNPs) in or near known or putative carotenoid metabolism genes [β-carotene 15,15’ monooxygenase 1 (BCO1), scavenger receptor class B type 1 (SCARB1), ATP-binding cassette transporter subfamily A member 1 (ABCA1), microsomal triglyceride transfer protein (MTTP), apolipoprotein B-48, elongation of very long chain fatty acids protein 2 (ELOVL2), and ATP-binding cassette subfamily B member 1 (ABCB1), and an intergenic superoxide dismutase 2, mitochondrial-associated SNP] are predictive of plasma lycopene responses to steady state tomato juice consumption. Secondary linear regression analyses of data from a dose-escalation study of prostate cancer patients [n = 47; mean ± SEM age: 60 ± 1 y; BMI (in kg/m2): 32 ± 1] consuming 0, 1, or 2 cans of tomato-soy juice/d (163 mL/can; 20.6 mg lycopene 1.2 mg β-carotene/can) for 24 ± 0.7 d before prostatectomy were conducted to explore 11 SNP genotype effects on the change in plasma lycopene and plasma and prostate tissue concentrations of lycopene, β-carotene, phytoene, and phytofluene. Two BCO1 SNP genotypes were significant predictors of the change in plasma lycopene, with SNP effects differing in magnitude and direction, depending on the level of juice intake (rs12934922 × diet group P = 0.02; rs6564851 × diet group P = 0.046). Further analyses suggested that plasma β-carotene changes were predicted by BCO1 rs12934922 (P 
ISSN:0022-3166
1541-6100
1541-6100
DOI:10.1093/jn/nxy304