Loading…

High Response CO Sensor Based on a Polyaniline/SnO₂ Nanocomposite

A polyaniline (PANI)/tin oxide (SnO₂) composite for a CO sensor was fabricated using a composite film composed of SnO₂ nanoparticles and PANI deposition in the present study. Tin oxide nanoparticles were synthesized by the sol-gel method. The SnO₂ nanoparticles provided a high surface area to signif...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2019-01, Vol.11 (1), p.184
Main Authors: Jian, Kai-Syuan, Chang, Chi-Jung, Wu, Jerry J, Chang, Yu-Cheng, Tsay, Chien-Yie, Chen, Jing-Heng, Horng, Tzyy-Leng, Lee, Gang-Juan, Karuppasamy, Lakshmanan, Anandan, Sambandam, Chen, Chin-Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-41ab49e408d4c6fd0a42c5f7a33ba88528eb614b28dfacf7179d1be6de28fa2b3
cites cdi_FETCH-LOGICAL-c415t-41ab49e408d4c6fd0a42c5f7a33ba88528eb614b28dfacf7179d1be6de28fa2b3
container_end_page
container_issue 1
container_start_page 184
container_title Polymers
container_volume 11
creator Jian, Kai-Syuan
Chang, Chi-Jung
Wu, Jerry J
Chang, Yu-Cheng
Tsay, Chien-Yie
Chen, Jing-Heng
Horng, Tzyy-Leng
Lee, Gang-Juan
Karuppasamy, Lakshmanan
Anandan, Sambandam
Chen, Chin-Yi
description A polyaniline (PANI)/tin oxide (SnO₂) composite for a CO sensor was fabricated using a composite film composed of SnO₂ nanoparticles and PANI deposition in the present study. Tin oxide nanoparticles were synthesized by the sol-gel method. The SnO₂ nanoparticles provided a high surface area to significantly enhance the response to the change in CO concentration at low operating temperature (
doi_str_mv 10.3390/polym11010184
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6401732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557230603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-41ab49e408d4c6fd0a42c5f7a33ba88528eb614b28dfacf7179d1be6de28fa2b3</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhhdRbKk9epWAFy-xsx_ZbC-CFrVCsWL1vGySSY0kuzHbCr32p_pLjLRK68xhBubhnRleQk4pXHI-hEHtylVFKbSpxAHpMoh5KLiEw52-Q_rev0MbIpKSxsekw2EogUrVJaNxMX8LntHXznoMRtNghta7JrgxHrPA2cAET-0WY4uysDiY2enXeh08GutSV9XOFws8IUe5KT32t7VHXu9uX0bjcDK9fxhdT8JU0GgRCmoSMUQBKhOpzDMwgqVRHhvOE6NUxBQmkoqEqSw3aR7TeJjRBGWGTOWGJbxHrja69TKpMEvRLhpT6ropKtOstDOF3p_Y4k3P3aeWAmjMWStwsRVo3McS_UJXhU-xLI1Ft_SaMZCMKeDQouf_0He3bGz7nmZRFDMOEnhLhRsqbZz3DeZ_x1DQPw7pPYda_mz3gz_61w_-DROtjUc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557230603</pqid></control><display><type>article</type><title>High Response CO Sensor Based on a Polyaniline/SnO₂ Nanocomposite</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Jian, Kai-Syuan ; Chang, Chi-Jung ; Wu, Jerry J ; Chang, Yu-Cheng ; Tsay, Chien-Yie ; Chen, Jing-Heng ; Horng, Tzyy-Leng ; Lee, Gang-Juan ; Karuppasamy, Lakshmanan ; Anandan, Sambandam ; Chen, Chin-Yi</creator><creatorcontrib>Jian, Kai-Syuan ; Chang, Chi-Jung ; Wu, Jerry J ; Chang, Yu-Cheng ; Tsay, Chien-Yie ; Chen, Jing-Heng ; Horng, Tzyy-Leng ; Lee, Gang-Juan ; Karuppasamy, Lakshmanan ; Anandan, Sambandam ; Chen, Chin-Yi</creatorcontrib><description>A polyaniline (PANI)/tin oxide (SnO₂) composite for a CO sensor was fabricated using a composite film composed of SnO₂ nanoparticles and PANI deposition in the present study. Tin oxide nanoparticles were synthesized by the sol-gel method. The SnO₂ nanoparticles provided a high surface area to significantly enhance the response to the change in CO concentration at low operating temperature (&lt;75 °C). The excellent sensor response was mainly attributed to the relatively good properties of PANI in the redox reaction during sensing, which produced a great resistance difference between the air and CO gas at low operating temperature. Therefore, the combination of -type SnO₂ nanoparticles with a high surface area and a thick film of conductive PANI is an effective strategy to design a high-performance CO gas sensor.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym11010184</identifier><identifier>PMID: 30960168</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; Carbon monoxide ; Electrodes ; Ethanol ; Gas sensors ; Heat ; Metal oxides ; Microscopy ; Nanocomposites ; Nanoparticles ; Operating temperature ; Polyanilines ; Redox reactions ; Screen printing ; Sensors ; Sol-gel processes ; Surface area ; Tin dioxide ; Tin oxides ; Zinc oxides</subject><ispartof>Polymers, 2019-01, Vol.11 (1), p.184</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-41ab49e408d4c6fd0a42c5f7a33ba88528eb614b28dfacf7179d1be6de28fa2b3</citedby><cites>FETCH-LOGICAL-c415t-41ab49e408d4c6fd0a42c5f7a33ba88528eb614b28dfacf7179d1be6de28fa2b3</cites><orcidid>0000-0003-2418-1005 ; 0000-0003-2050-214X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2557230603/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2557230603?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30960168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jian, Kai-Syuan</creatorcontrib><creatorcontrib>Chang, Chi-Jung</creatorcontrib><creatorcontrib>Wu, Jerry J</creatorcontrib><creatorcontrib>Chang, Yu-Cheng</creatorcontrib><creatorcontrib>Tsay, Chien-Yie</creatorcontrib><creatorcontrib>Chen, Jing-Heng</creatorcontrib><creatorcontrib>Horng, Tzyy-Leng</creatorcontrib><creatorcontrib>Lee, Gang-Juan</creatorcontrib><creatorcontrib>Karuppasamy, Lakshmanan</creatorcontrib><creatorcontrib>Anandan, Sambandam</creatorcontrib><creatorcontrib>Chen, Chin-Yi</creatorcontrib><title>High Response CO Sensor Based on a Polyaniline/SnO₂ Nanocomposite</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>A polyaniline (PANI)/tin oxide (SnO₂) composite for a CO sensor was fabricated using a composite film composed of SnO₂ nanoparticles and PANI deposition in the present study. Tin oxide nanoparticles were synthesized by the sol-gel method. The SnO₂ nanoparticles provided a high surface area to significantly enhance the response to the change in CO concentration at low operating temperature (&lt;75 °C). The excellent sensor response was mainly attributed to the relatively good properties of PANI in the redox reaction during sensing, which produced a great resistance difference between the air and CO gas at low operating temperature. Therefore, the combination of -type SnO₂ nanoparticles with a high surface area and a thick film of conductive PANI is an effective strategy to design a high-performance CO gas sensor.</description><subject>Adsorption</subject><subject>Carbon monoxide</subject><subject>Electrodes</subject><subject>Ethanol</subject><subject>Gas sensors</subject><subject>Heat</subject><subject>Metal oxides</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Operating temperature</subject><subject>Polyanilines</subject><subject>Redox reactions</subject><subject>Screen printing</subject><subject>Sensors</subject><subject>Sol-gel processes</subject><subject>Surface area</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><subject>Zinc oxides</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1Lw0AQhhdRbKk9epWAFy-xsx_ZbC-CFrVCsWL1vGySSY0kuzHbCr32p_pLjLRK68xhBubhnRleQk4pXHI-hEHtylVFKbSpxAHpMoh5KLiEw52-Q_rev0MbIpKSxsekw2EogUrVJaNxMX8LntHXznoMRtNghta7JrgxHrPA2cAET-0WY4uysDiY2enXeh08GutSV9XOFws8IUe5KT32t7VHXu9uX0bjcDK9fxhdT8JU0GgRCmoSMUQBKhOpzDMwgqVRHhvOE6NUxBQmkoqEqSw3aR7TeJjRBGWGTOWGJbxHrja69TKpMEvRLhpT6ropKtOstDOF3p_Y4k3P3aeWAmjMWStwsRVo3McS_UJXhU-xLI1Ft_SaMZCMKeDQouf_0He3bGz7nmZRFDMOEnhLhRsqbZz3DeZ_x1DQPw7pPYda_mz3gz_61w_-DROtjUc</recordid><startdate>20190121</startdate><enddate>20190121</enddate><creator>Jian, Kai-Syuan</creator><creator>Chang, Chi-Jung</creator><creator>Wu, Jerry J</creator><creator>Chang, Yu-Cheng</creator><creator>Tsay, Chien-Yie</creator><creator>Chen, Jing-Heng</creator><creator>Horng, Tzyy-Leng</creator><creator>Lee, Gang-Juan</creator><creator>Karuppasamy, Lakshmanan</creator><creator>Anandan, Sambandam</creator><creator>Chen, Chin-Yi</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2418-1005</orcidid><orcidid>https://orcid.org/0000-0003-2050-214X</orcidid></search><sort><creationdate>20190121</creationdate><title>High Response CO Sensor Based on a Polyaniline/SnO₂ Nanocomposite</title><author>Jian, Kai-Syuan ; Chang, Chi-Jung ; Wu, Jerry J ; Chang, Yu-Cheng ; Tsay, Chien-Yie ; Chen, Jing-Heng ; Horng, Tzyy-Leng ; Lee, Gang-Juan ; Karuppasamy, Lakshmanan ; Anandan, Sambandam ; Chen, Chin-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-41ab49e408d4c6fd0a42c5f7a33ba88528eb614b28dfacf7179d1be6de28fa2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Carbon monoxide</topic><topic>Electrodes</topic><topic>Ethanol</topic><topic>Gas sensors</topic><topic>Heat</topic><topic>Metal oxides</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Operating temperature</topic><topic>Polyanilines</topic><topic>Redox reactions</topic><topic>Screen printing</topic><topic>Sensors</topic><topic>Sol-gel processes</topic><topic>Surface area</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian, Kai-Syuan</creatorcontrib><creatorcontrib>Chang, Chi-Jung</creatorcontrib><creatorcontrib>Wu, Jerry J</creatorcontrib><creatorcontrib>Chang, Yu-Cheng</creatorcontrib><creatorcontrib>Tsay, Chien-Yie</creatorcontrib><creatorcontrib>Chen, Jing-Heng</creatorcontrib><creatorcontrib>Horng, Tzyy-Leng</creatorcontrib><creatorcontrib>Lee, Gang-Juan</creatorcontrib><creatorcontrib>Karuppasamy, Lakshmanan</creatorcontrib><creatorcontrib>Anandan, Sambandam</creatorcontrib><creatorcontrib>Chen, Chin-Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian, Kai-Syuan</au><au>Chang, Chi-Jung</au><au>Wu, Jerry J</au><au>Chang, Yu-Cheng</au><au>Tsay, Chien-Yie</au><au>Chen, Jing-Heng</au><au>Horng, Tzyy-Leng</au><au>Lee, Gang-Juan</au><au>Karuppasamy, Lakshmanan</au><au>Anandan, Sambandam</au><au>Chen, Chin-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Response CO Sensor Based on a Polyaniline/SnO₂ Nanocomposite</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2019-01-21</date><risdate>2019</risdate><volume>11</volume><issue>1</issue><spage>184</spage><pages>184-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>A polyaniline (PANI)/tin oxide (SnO₂) composite for a CO sensor was fabricated using a composite film composed of SnO₂ nanoparticles and PANI deposition in the present study. Tin oxide nanoparticles were synthesized by the sol-gel method. The SnO₂ nanoparticles provided a high surface area to significantly enhance the response to the change in CO concentration at low operating temperature (&lt;75 °C). The excellent sensor response was mainly attributed to the relatively good properties of PANI in the redox reaction during sensing, which produced a great resistance difference between the air and CO gas at low operating temperature. Therefore, the combination of -type SnO₂ nanoparticles with a high surface area and a thick film of conductive PANI is an effective strategy to design a high-performance CO gas sensor.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30960168</pmid><doi>10.3390/polym11010184</doi><orcidid>https://orcid.org/0000-0003-2418-1005</orcidid><orcidid>https://orcid.org/0000-0003-2050-214X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2019-01, Vol.11 (1), p.184
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6401732
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Adsorption
Carbon monoxide
Electrodes
Ethanol
Gas sensors
Heat
Metal oxides
Microscopy
Nanocomposites
Nanoparticles
Operating temperature
Polyanilines
Redox reactions
Screen printing
Sensors
Sol-gel processes
Surface area
Tin dioxide
Tin oxides
Zinc oxides
title High Response CO Sensor Based on a Polyaniline/SnO₂ Nanocomposite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Response%20CO%20Sensor%20Based%20on%20a%20Polyaniline/SnO%E2%82%82%20Nanocomposite&rft.jtitle=Polymers&rft.au=Jian,%20Kai-Syuan&rft.date=2019-01-21&rft.volume=11&rft.issue=1&rft.spage=184&rft.pages=184-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym11010184&rft_dat=%3Cproquest_pubme%3E2557230603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-41ab49e408d4c6fd0a42c5f7a33ba88528eb614b28dfacf7179d1be6de28fa2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557230603&rft_id=info:pmid/30960168&rfr_iscdi=true