Loading…
MADEx: A System for Detecting Medications, Adverse Drug Events, and Their Relations from Clinical Notes
Introduction Early detection of adverse drug events (ADEs) from electronic health records is an important, challenging task to support pharmacovigilance and drug safety surveillance. A well-known challenge to use clinical text for detection of ADEs is that much of the detailed information is documen...
Saved in:
Published in: | Drug safety 2019-01, Vol.42 (1), p.123-133 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction
Early detection of adverse drug events (ADEs) from electronic health records is an important, challenging task to support pharmacovigilance and drug safety surveillance. A well-known challenge to use clinical text for detection of ADEs is that much of the detailed information is documented in a narrative manner. Clinical natural language processing (NLP) is the key technology to extract information from unstructured clinical text.
Objective
We present a machine learning-based clinical NLP system—MADEx—for detecting medications, ADEs, and their relations from clinical notes.
Methods
We developed a recurrent neural network (RNN) model using a long short-term memory (LSTM) strategy for clinical name entity recognition (NER) and compared it with baseline conditional random fields (CRFs). We also developed a modified training strategy for the RNN, which outperformed the widely used early stop strategy. For relation extraction, we compared support vector machines (SVMs) and random forests on single-sentence relations and cross-sentence relations. In addition, we developed an integrated pipeline to extract entities and relations together by combining RNNs and SVMs.
Results
MADEx achieved the top-three best performances (F1 score of 0.8233) for clinical NER in the 2018 Medication and Adverse Drug Events (MADE1.0) challenge. The post-challenge evaluation showed that the relation extraction module and integrated pipeline (identify entity and relation together) of MADEx are comparable with the best systems developed in this challenge.
Conclusion
This study demonstrated the efficiency of deep learning methods for automatic extraction of medications, ADEs, and their relations from clinical text to support pharmacovigilance and drug safety surveillance. |
---|---|
ISSN: | 0114-5916 1179-1942 |
DOI: | 10.1007/s40264-018-0761-0 |