Loading…

PvdF of pyoverdin biosynthesis is a structurally unique N10-formyltetrahydrofolate-dependent formyltransferase

The hydroxyornithine transformylase from Pseudomonas aeruginosa is known by the gene name pvdF, and has been hypothesized to use N10-formyltetrahydrofolate (N10-fTHF) as a co-substrate formyl donor to convert N5-hydroxyornithine (OHOrn) to N5-formyl- N5-hydroxyornithine (fOHOrn). PvdF is in the bios...

Full description

Saved in:
Bibliographic Details
Published in:Archives of biochemistry and biophysics 2019-03, Vol.664, p.40-50
Main Authors: Kenjić, Nikola, Hoag, Matthew R., Moraski, Garrett C., Caperelli, Carol A., Moran, Graham R., Lamb, Audrey L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hydroxyornithine transformylase from Pseudomonas aeruginosa is known by the gene name pvdF, and has been hypothesized to use N10-formyltetrahydrofolate (N10-fTHF) as a co-substrate formyl donor to convert N5-hydroxyornithine (OHOrn) to N5-formyl- N5-hydroxyornithine (fOHOrn). PvdF is in the biosynthetic pathway for pyoverdin biosynthesis, a siderophore generated under iron-limiting conditions that has been linked to virulence, quorum sensing and biofilm formation. The structure of PvdF was determined by X-ray crystallography to 2.3 Å, revealing a formyltransferase fold consistent with N10-formyltetrahydrofolate dependent enzymes, such as the glycinamide ribonucleotide transformylases, N-sugar transformylases and methionyl-tRNA transformylases. Whereas the core structure, including the catalytic triad, is conserved, PvdF has three insertions of 18 or more amino acids, which we hypothesize are key to binding the OHOrn substrate. Steady state kinetics revealed a non-hyperbolic rate curve, promoting the hypothesis that PvdF uses a random-sequential mechanism, and favors folate binding over OHOrn.
ISSN:0003-9861
1096-0384
DOI:10.1016/j.abb.2019.01.028