Loadingā¦
Preparation and Characterization of Highly Ordered Mercapto-Modified Bridged Silsesquioxane for Removing Ammonia-Nitrogen from Water
In acidic conditions, mesoporous molecular sieves SBA-15 and SBA-15-SH were synthesized. Structural characterization was carried out by powder X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), C CP MAS...
Saved in:
Published in: | Polymers 2018-07, Vol.10 (8), p.819 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In acidic conditions, mesoporous molecular sieves SBA-15 and SBA-15-SH were synthesized. Structural characterization was carried out by powder X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM),
C CP MAS-NMR,
Si CP MAS-NMR and nitrogen adsorptionā»desorption (BET). The results showed that in SBA-15-SH, the direct synthesis method made the absorption peak intensity weaker than that of SBA-15, while the post-grafted peak intensity did not change. Their spectra were different due to the C-H stretching bands of Si-O-Si and propyl groups. But their structure was still evenly distributed and was still hexangular mesoporous structure. Their pore size increased, and the H-SBA-15-SH had larger pore size. The adsorption of ammonia-nitrogen by molecular sieve was affected by the relative pressure and the concentration of ammonia-nitrogen, in which the adsorption capacity of G-SBA-15-SH was the largest and the adsorption capacity of SBA-15 was the smallest. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym10080819 |