Loading…

Inverse-square law between time and amplitude for crossing tipping thresholds

A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2019-02, Vol.475 (2222), p.20180504-20180504
Main Authors: Ritchie, Paul, Karabacak, Özkan, Sieber, Jan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03
cites cdi_FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03
container_end_page 20180504
container_issue 2222
container_start_page 20180504
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 475
creator Ritchie, Paul
Karabacak, Özkan
Sieber, Jan
description A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.
doi_str_mv 10.1098/rspa.2018.0504
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190088400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBAISuHKEeXIJWXt2IlzQUKIl1TEBc6WH5s2KC_shIq_p2lLBadZaWdndncIuaAwo5DLax86PWNA5QwE8AMyoTyjMct5eriuk5THAhg9IachfABALmR2TE4SkCKRST4hL8_NF_qAcfgctMeo0qvIYL9CbKK-rDHSjYt03VVlPziMitZH1rchlM1i3e-6DS49hmVbuXBGjgpdBTzf4ZS8P9y_3T3F89fH57vbeWxFkvex5ZmRRqbOMJ0LbgteaEO1045lOUrDwDo0lhssMhCWZtKJFJG5VFhmNSRTcrPV7QZTo7PY9F5XqvNlrf23anWp_neacqkW7ZdKOQgu6Frgaifg288BQ6_qMlisKt1gOwTFaA4gJYfRa7albu72WOxtKKgxAzVmoMYM1JjBeuDy73J7-u_Tkx8ceIag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190088400</pqid></control><display><type>article</type><title>Inverse-square law between time and amplitude for crossing tipping thresholds</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Ritchie, Paul ; Karabacak, Özkan ; Sieber, Jan</creator><creatorcontrib>Ritchie, Paul ; Karabacak, Özkan ; Sieber, Jan</creatorcontrib><description>A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2018.0504</identifier><identifier>PMID: 30853839</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2019-02, Vol.475 (2222), p.20180504-20180504</ispartof><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03</citedby><cites>FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03</cites><orcidid>0000-0002-7649-2991 ; 0000-0002-9558-1324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30853839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ritchie, Paul</creatorcontrib><creatorcontrib>Karabacak, Özkan</creatorcontrib><creatorcontrib>Sieber, Jan</creatorcontrib><title>Inverse-square law between time and amplitude for crossing tipping thresholds</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc Math Phys Eng Sci</addtitle><description>A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUctOwzAQtBAISuHKEeXIJWXt2IlzQUKIl1TEBc6WH5s2KC_shIq_p2lLBadZaWdndncIuaAwo5DLax86PWNA5QwE8AMyoTyjMct5eriuk5THAhg9IachfABALmR2TE4SkCKRST4hL8_NF_qAcfgctMeo0qvIYL9CbKK-rDHSjYt03VVlPziMitZH1rchlM1i3e-6DS49hmVbuXBGjgpdBTzf4ZS8P9y_3T3F89fH57vbeWxFkvex5ZmRRqbOMJ0LbgteaEO1045lOUrDwDo0lhssMhCWZtKJFJG5VFhmNSRTcrPV7QZTo7PY9F5XqvNlrf23anWp_neacqkW7ZdKOQgu6Frgaifg288BQ6_qMlisKt1gOwTFaA4gJYfRa7albu72WOxtKKgxAzVmoMYM1JjBeuDy73J7-u_Tkx8ceIag</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Ritchie, Paul</creator><creator>Karabacak, Özkan</creator><creator>Sieber, Jan</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7649-2991</orcidid><orcidid>https://orcid.org/0000-0002-9558-1324</orcidid></search><sort><creationdate>20190201</creationdate><title>Inverse-square law between time and amplitude for crossing tipping thresholds</title><author>Ritchie, Paul ; Karabacak, Özkan ; Sieber, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritchie, Paul</creatorcontrib><creatorcontrib>Karabacak, Özkan</creatorcontrib><creatorcontrib>Sieber, Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritchie, Paul</au><au>Karabacak, Özkan</au><au>Sieber, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse-square law between time and amplitude for crossing tipping thresholds</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>475</volume><issue>2222</issue><spage>20180504</spage><epage>20180504</epage><pages>20180504-20180504</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>30853839</pmid><doi>10.1098/rspa.2018.0504</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7649-2991</orcidid><orcidid>https://orcid.org/0000-0002-9558-1324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2019-02, Vol.475 (2222), p.20180504-20180504
issn 1364-5021
1471-2946
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405451
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
title Inverse-square law between time and amplitude for crossing tipping thresholds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse-square%20law%20between%20time%20and%20amplitude%20for%20crossing%20tipping%20thresholds&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ritchie,%20Paul&rft.date=2019-02-01&rft.volume=475&rft.issue=2222&rft.spage=20180504&rft.epage=20180504&rft.pages=20180504-20180504&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2018.0504&rft_dat=%3Cproquest_pubme%3E2190088400%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190088400&rft_id=info:pmid/30853839&rfr_iscdi=true