Loading…
Inverse-square law between time and amplitude for crossing tipping thresholds
A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far th...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2019-02, Vol.475 (2222), p.20180504-20180504 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03 |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03 |
container_end_page | 20180504 |
container_issue | 2222 |
container_start_page | 20180504 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 475 |
creator | Ritchie, Paul Karabacak, Özkan Sieber, Jan |
description | A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances. |
doi_str_mv | 10.1098/rspa.2018.0504 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190088400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBAISuHKEeXIJWXt2IlzQUKIl1TEBc6WH5s2KC_shIq_p2lLBadZaWdndncIuaAwo5DLax86PWNA5QwE8AMyoTyjMct5eriuk5THAhg9IachfABALmR2TE4SkCKRST4hL8_NF_qAcfgctMeo0qvIYL9CbKK-rDHSjYt03VVlPziMitZH1rchlM1i3e-6DS49hmVbuXBGjgpdBTzf4ZS8P9y_3T3F89fH57vbeWxFkvex5ZmRRqbOMJ0LbgteaEO1045lOUrDwDo0lhssMhCWZtKJFJG5VFhmNSRTcrPV7QZTo7PY9F5XqvNlrf23anWp_neacqkW7ZdKOQgu6Frgaifg288BQ6_qMlisKt1gOwTFaA4gJYfRa7albu72WOxtKKgxAzVmoMYM1JjBeuDy73J7-u_Tkx8ceIag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190088400</pqid></control><display><type>article</type><title>Inverse-square law between time and amplitude for crossing tipping thresholds</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Ritchie, Paul ; Karabacak, Özkan ; Sieber, Jan</creator><creatorcontrib>Ritchie, Paul ; Karabacak, Özkan ; Sieber, Jan</creatorcontrib><description>A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2018.0504</identifier><identifier>PMID: 30853839</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2019-02, Vol.475 (2222), p.20180504-20180504</ispartof><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03</citedby><cites>FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03</cites><orcidid>0000-0002-7649-2991 ; 0000-0002-9558-1324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30853839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ritchie, Paul</creatorcontrib><creatorcontrib>Karabacak, Özkan</creatorcontrib><creatorcontrib>Sieber, Jan</creatorcontrib><title>Inverse-square law between time and amplitude for crossing tipping thresholds</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc Math Phys Eng Sci</addtitle><description>A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUctOwzAQtBAISuHKEeXIJWXt2IlzQUKIl1TEBc6WH5s2KC_shIq_p2lLBadZaWdndncIuaAwo5DLax86PWNA5QwE8AMyoTyjMct5eriuk5THAhg9IachfABALmR2TE4SkCKRST4hL8_NF_qAcfgctMeo0qvIYL9CbKK-rDHSjYt03VVlPziMitZH1rchlM1i3e-6DS49hmVbuXBGjgpdBTzf4ZS8P9y_3T3F89fH57vbeWxFkvex5ZmRRqbOMJ0LbgteaEO1045lOUrDwDo0lhssMhCWZtKJFJG5VFhmNSRTcrPV7QZTo7PY9F5XqvNlrf23anWp_neacqkW7ZdKOQgu6Frgaifg288BQ6_qMlisKt1gOwTFaA4gJYfRa7albu72WOxtKKgxAzVmoMYM1JjBeuDy73J7-u_Tkx8ceIag</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Ritchie, Paul</creator><creator>Karabacak, Özkan</creator><creator>Sieber, Jan</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7649-2991</orcidid><orcidid>https://orcid.org/0000-0002-9558-1324</orcidid></search><sort><creationdate>20190201</creationdate><title>Inverse-square law between time and amplitude for crossing tipping thresholds</title><author>Ritchie, Paul ; Karabacak, Özkan ; Sieber, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritchie, Paul</creatorcontrib><creatorcontrib>Karabacak, Özkan</creatorcontrib><creatorcontrib>Sieber, Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritchie, Paul</au><au>Karabacak, Özkan</au><au>Sieber, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse-square law between time and amplitude for crossing tipping thresholds</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>475</volume><issue>2222</issue><spage>20180504</spage><epage>20180504</epage><pages>20180504-20180504</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>30853839</pmid><doi>10.1098/rspa.2018.0504</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7649-2991</orcidid><orcidid>https://orcid.org/0000-0002-9558-1324</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2019-02, Vol.475 (2222), p.20180504-20180504 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405451 |
source | JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
title | Inverse-square law between time and amplitude for crossing tipping thresholds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse-square%20law%20between%20time%20and%20amplitude%20for%20crossing%20tipping%20thresholds&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ritchie,%20Paul&rft.date=2019-02-01&rft.volume=475&rft.issue=2222&rft.spage=20180504&rft.epage=20180504&rft.pages=20180504-20180504&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2018.0504&rft_dat=%3Cproquest_pubme%3E2190088400%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-c47b8b86db2a954cf4fab1adad279e8b20cdebc4bef705c178d56ee2d65c2ca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190088400&rft_id=info:pmid/30853839&rfr_iscdi=true |