Loading…

MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules

Microtubules are polar, dynamic filaments fundamental to many cellular processes. In vitro reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-03, Vol.9 (1), p.3794-3794, Article 3794
Main Authors: Kapoor, Varun, Hirst, William G., Hentschel, Christoph, Preibisch, Stephan, Reber, Simone
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3
cites cdi_FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3
container_end_page 3794
container_issue 1
container_start_page 3794
container_title Scientific reports
container_volume 9
creator Kapoor, Varun
Hirst, William G.
Hentschel, Christoph
Preibisch, Stephan
Reber, Simone
description Microtubules are polar, dynamic filaments fundamental to many cellular processes. In vitro reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios.
doi_str_mv 10.1038/s41598-018-37767-1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188972765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3</originalsourceid><addsrcrecordid>eNp9kUtPGzEUha0K1CDIH-iiGokNCwb8frCoFPFqBYhNWFuOx5M6nbHBnqmUf1-TUApd4I0tne-ee30PAF8QPEGQyNNMEVOyhkjWRAguavQJ7GFIWY0Jxjtv3hMwzXkFy2FYUaQ-gwmBknIB2R64uZsnY3-dVbNxiL0ZXFNduMHZwcdwXG00H5bHlQlNNQumW2efq9hWF-tgem-rO29THMbF2Ll8AHZb02U3fbn3wcPV5fz8e317f_3jfHZbWyroUC-cIlJyXuZvBWMKUSXaFlKLGTeIENNYK52DXFImFMW2gQJi1CLZKGxwS_bBt63v47joXWNdGJLp9GPyvUlrHY3X75Xgf-pl_K05hawYFoOjF4MUn0aXB937bF3XmeDimDVGUjHKOYYFPfwPXcUxlUVsKKkEFpwVCm-psoyck2tfh0FQP8elt3HpEpfexKVRKfr69huvJX_DKQDZArlIYenSv94f2P4Bj8ee3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188972765</pqid></control><display><type>article</type><title>MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kapoor, Varun ; Hirst, William G. ; Hentschel, Christoph ; Preibisch, Stephan ; Reber, Simone</creator><creatorcontrib>Kapoor, Varun ; Hirst, William G. ; Hentschel, Christoph ; Preibisch, Stephan ; Reber, Simone</creatorcontrib><description>Microtubules are polar, dynamic filaments fundamental to many cellular processes. In vitro reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-37767-1</identifier><identifier>PMID: 30846705</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1564 ; 631/553/794 ; Automation ; Data interpretation ; Data processing ; Filaments ; Fluorescence microscopy ; Humanities and Social Sciences ; Microtubules ; multidisciplinary ; Population statistics ; Science ; Science (multidisciplinary) ; Statistical analysis ; Tubulin</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.3794-3794, Article 3794</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3</citedby><cites>FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3</cites><orcidid>0000-0002-0276-494X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2188972765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2188972765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30846705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kapoor, Varun</creatorcontrib><creatorcontrib>Hirst, William G.</creatorcontrib><creatorcontrib>Hentschel, Christoph</creatorcontrib><creatorcontrib>Preibisch, Stephan</creatorcontrib><creatorcontrib>Reber, Simone</creatorcontrib><title>MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Microtubules are polar, dynamic filaments fundamental to many cellular processes. In vitro reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios.</description><subject>631/114/1564</subject><subject>631/553/794</subject><subject>Automation</subject><subject>Data interpretation</subject><subject>Data processing</subject><subject>Filaments</subject><subject>Fluorescence microscopy</subject><subject>Humanities and Social Sciences</subject><subject>Microtubules</subject><subject>multidisciplinary</subject><subject>Population statistics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Statistical analysis</subject><subject>Tubulin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtPGzEUha0K1CDIH-iiGokNCwb8frCoFPFqBYhNWFuOx5M6nbHBnqmUf1-TUApd4I0tne-ee30PAF8QPEGQyNNMEVOyhkjWRAguavQJ7GFIWY0Jxjtv3hMwzXkFy2FYUaQ-gwmBknIB2R64uZsnY3-dVbNxiL0ZXFNduMHZwcdwXG00H5bHlQlNNQumW2efq9hWF-tgem-rO29THMbF2Ll8AHZb02U3fbn3wcPV5fz8e317f_3jfHZbWyroUC-cIlJyXuZvBWMKUSXaFlKLGTeIENNYK52DXFImFMW2gQJi1CLZKGxwS_bBt63v47joXWNdGJLp9GPyvUlrHY3X75Xgf-pl_K05hawYFoOjF4MUn0aXB937bF3XmeDimDVGUjHKOYYFPfwPXcUxlUVsKKkEFpwVCm-psoyck2tfh0FQP8elt3HpEpfexKVRKfr69huvJX_DKQDZArlIYenSv94f2P4Bj8ee3g</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Kapoor, Varun</creator><creator>Hirst, William G.</creator><creator>Hentschel, Christoph</creator><creator>Preibisch, Stephan</creator><creator>Reber, Simone</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0276-494X</orcidid></search><sort><creationdate>20190307</creationdate><title>MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules</title><author>Kapoor, Varun ; Hirst, William G. ; Hentschel, Christoph ; Preibisch, Stephan ; Reber, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/1564</topic><topic>631/553/794</topic><topic>Automation</topic><topic>Data interpretation</topic><topic>Data processing</topic><topic>Filaments</topic><topic>Fluorescence microscopy</topic><topic>Humanities and Social Sciences</topic><topic>Microtubules</topic><topic>multidisciplinary</topic><topic>Population statistics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Statistical analysis</topic><topic>Tubulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapoor, Varun</creatorcontrib><creatorcontrib>Hirst, William G.</creatorcontrib><creatorcontrib>Hentschel, Christoph</creatorcontrib><creatorcontrib>Preibisch, Stephan</creatorcontrib><creatorcontrib>Reber, Simone</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapoor, Varun</au><au>Hirst, William G.</au><au>Hentschel, Christoph</au><au>Preibisch, Stephan</au><au>Reber, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-07</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>3794</spage><epage>3794</epage><pages>3794-3794</pages><artnum>3794</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Microtubules are polar, dynamic filaments fundamental to many cellular processes. In vitro reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30846705</pmid><doi>10.1038/s41598-018-37767-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0276-494X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-03, Vol.9 (1), p.3794-3794, Article 3794
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405942
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/1564
631/553/794
Automation
Data interpretation
Data processing
Filaments
Fluorescence microscopy
Humanities and Social Sciences
Microtubules
multidisciplinary
Population statistics
Science
Science (multidisciplinary)
Statistical analysis
Tubulin
title MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MTrack:%20Automated%20Detection,%20Tracking,%20and%20Analysis%20of%20Dynamic%20Microtubules&rft.jtitle=Scientific%20reports&rft.au=Kapoor,%20Varun&rft.date=2019-03-07&rft.volume=9&rft.issue=1&rft.spage=3794&rft.epage=3794&rft.pages=3794-3794&rft.artnum=3794&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-37767-1&rft_dat=%3Cproquest_pubme%3E2188972765%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2188972765&rft_id=info:pmid/30846705&rfr_iscdi=true