Loading…
MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules
Microtubules are polar, dynamic filaments fundamental to many cellular processes. In vitro reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzi...
Saved in:
Published in: | Scientific reports 2019-03, Vol.9 (1), p.3794-3794, Article 3794 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3 |
container_end_page | 3794 |
container_issue | 1 |
container_start_page | 3794 |
container_title | Scientific reports |
container_volume | 9 |
creator | Kapoor, Varun Hirst, William G. Hentschel, Christoph Preibisch, Stephan Reber, Simone |
description | Microtubules are polar, dynamic filaments fundamental to many cellular processes.
In vitro
reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios. |
doi_str_mv | 10.1038/s41598-018-37767-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188972765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3</originalsourceid><addsrcrecordid>eNp9kUtPGzEUha0K1CDIH-iiGokNCwb8frCoFPFqBYhNWFuOx5M6nbHBnqmUf1-TUApd4I0tne-ee30PAF8QPEGQyNNMEVOyhkjWRAguavQJ7GFIWY0Jxjtv3hMwzXkFy2FYUaQ-gwmBknIB2R64uZsnY3-dVbNxiL0ZXFNduMHZwcdwXG00H5bHlQlNNQumW2efq9hWF-tgem-rO29THMbF2Ll8AHZb02U3fbn3wcPV5fz8e317f_3jfHZbWyroUC-cIlJyXuZvBWMKUSXaFlKLGTeIENNYK52DXFImFMW2gQJi1CLZKGxwS_bBt63v47joXWNdGJLp9GPyvUlrHY3X75Xgf-pl_K05hawYFoOjF4MUn0aXB937bF3XmeDimDVGUjHKOYYFPfwPXcUxlUVsKKkEFpwVCm-psoyck2tfh0FQP8elt3HpEpfexKVRKfr69huvJX_DKQDZArlIYenSv94f2P4Bj8ee3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188972765</pqid></control><display><type>article</type><title>MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kapoor, Varun ; Hirst, William G. ; Hentschel, Christoph ; Preibisch, Stephan ; Reber, Simone</creator><creatorcontrib>Kapoor, Varun ; Hirst, William G. ; Hentschel, Christoph ; Preibisch, Stephan ; Reber, Simone</creatorcontrib><description>Microtubules are polar, dynamic filaments fundamental to many cellular processes.
In vitro
reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-37767-1</identifier><identifier>PMID: 30846705</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1564 ; 631/553/794 ; Automation ; Data interpretation ; Data processing ; Filaments ; Fluorescence microscopy ; Humanities and Social Sciences ; Microtubules ; multidisciplinary ; Population statistics ; Science ; Science (multidisciplinary) ; Statistical analysis ; Tubulin</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.3794-3794, Article 3794</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3</citedby><cites>FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3</cites><orcidid>0000-0002-0276-494X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2188972765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2188972765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30846705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kapoor, Varun</creatorcontrib><creatorcontrib>Hirst, William G.</creatorcontrib><creatorcontrib>Hentschel, Christoph</creatorcontrib><creatorcontrib>Preibisch, Stephan</creatorcontrib><creatorcontrib>Reber, Simone</creatorcontrib><title>MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Microtubules are polar, dynamic filaments fundamental to many cellular processes.
In vitro
reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios.</description><subject>631/114/1564</subject><subject>631/553/794</subject><subject>Automation</subject><subject>Data interpretation</subject><subject>Data processing</subject><subject>Filaments</subject><subject>Fluorescence microscopy</subject><subject>Humanities and Social Sciences</subject><subject>Microtubules</subject><subject>multidisciplinary</subject><subject>Population statistics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Statistical analysis</subject><subject>Tubulin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtPGzEUha0K1CDIH-iiGokNCwb8frCoFPFqBYhNWFuOx5M6nbHBnqmUf1-TUApd4I0tne-ee30PAF8QPEGQyNNMEVOyhkjWRAguavQJ7GFIWY0Jxjtv3hMwzXkFy2FYUaQ-gwmBknIB2R64uZsnY3-dVbNxiL0ZXFNduMHZwcdwXG00H5bHlQlNNQumW2efq9hWF-tgem-rO29THMbF2Ll8AHZb02U3fbn3wcPV5fz8e317f_3jfHZbWyroUC-cIlJyXuZvBWMKUSXaFlKLGTeIENNYK52DXFImFMW2gQJi1CLZKGxwS_bBt63v47joXWNdGJLp9GPyvUlrHY3X75Xgf-pl_K05hawYFoOjF4MUn0aXB937bF3XmeDimDVGUjHKOYYFPfwPXcUxlUVsKKkEFpwVCm-psoyck2tfh0FQP8elt3HpEpfexKVRKfr69huvJX_DKQDZArlIYenSv94f2P4Bj8ee3g</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Kapoor, Varun</creator><creator>Hirst, William G.</creator><creator>Hentschel, Christoph</creator><creator>Preibisch, Stephan</creator><creator>Reber, Simone</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0276-494X</orcidid></search><sort><creationdate>20190307</creationdate><title>MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules</title><author>Kapoor, Varun ; Hirst, William G. ; Hentschel, Christoph ; Preibisch, Stephan ; Reber, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/1564</topic><topic>631/553/794</topic><topic>Automation</topic><topic>Data interpretation</topic><topic>Data processing</topic><topic>Filaments</topic><topic>Fluorescence microscopy</topic><topic>Humanities and Social Sciences</topic><topic>Microtubules</topic><topic>multidisciplinary</topic><topic>Population statistics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Statistical analysis</topic><topic>Tubulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapoor, Varun</creatorcontrib><creatorcontrib>Hirst, William G.</creatorcontrib><creatorcontrib>Hentschel, Christoph</creatorcontrib><creatorcontrib>Preibisch, Stephan</creatorcontrib><creatorcontrib>Reber, Simone</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapoor, Varun</au><au>Hirst, William G.</au><au>Hentschel, Christoph</au><au>Preibisch, Stephan</au><au>Reber, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-07</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>3794</spage><epage>3794</epage><pages>3794-3794</pages><artnum>3794</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Microtubules are polar, dynamic filaments fundamental to many cellular processes.
In vitro
reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30846705</pmid><doi>10.1038/s41598-018-37767-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0276-494X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-03, Vol.9 (1), p.3794-3794, Article 3794 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405942 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1564 631/553/794 Automation Data interpretation Data processing Filaments Fluorescence microscopy Humanities and Social Sciences Microtubules multidisciplinary Population statistics Science Science (multidisciplinary) Statistical analysis Tubulin |
title | MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MTrack:%20Automated%20Detection,%20Tracking,%20and%20Analysis%20of%20Dynamic%20Microtubules&rft.jtitle=Scientific%20reports&rft.au=Kapoor,%20Varun&rft.date=2019-03-07&rft.volume=9&rft.issue=1&rft.spage=3794&rft.epage=3794&rft.pages=3794-3794&rft.artnum=3794&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-37767-1&rft_dat=%3Cproquest_pubme%3E2188972765%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-be938866159f75591497ff04c256a133adcc8ee068457942cd07021f18d92a2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2188972765&rft_id=info:pmid/30846705&rfr_iscdi=true |