Loading…

Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa

We investigated the high-pressure behavior of polyethylene (CH 2 ) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure,...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-03, Vol.9 (1), p.4196-4196, Article 4196
Main Authors: Hartley, N. J., Brown, S., Cowan, T. E., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Laso Garcia, A., Gericke, D. O., Glenzer, S. H., Granados, E., Heimann, P. A., Lee, H. J., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Ravasio, A., Rödel, M., Rohatsch, K., Saunders, A. M., Schölmerich, M., Schörner, M., Schuster, A. K., Sun, P., van Driel, T., Vorberger, J., Kraus, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the high-pressure behavior of polyethylene (CH 2 ) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure, from which we infer the presence of significant covalent bonding. The A 2 /m structure which we observe has previously been seen at significantly lower pressures, and the equation of state measured agrees with our findings. This result appears to contrast with recent data from shock-compressed polystyrene (CH) at higher temperatures, which demonstrated demixing and recrystallization into a diamond lattice, implying the breaking of the original chemical bonds. As such chemical processes have significant implications for the structure and energy transfer within ice giants, our results highlight the need for a deeper understanding of the chemistry of high pressure hydrocarbons, and the importance of better constraining planetary temperature profiles.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-40782-5