Loading…
Measurement of Glomerular Filtration Rate using Quantitative SPECT/CT and Deep-learning-based Kidney Segmentation
Quantitative SPECT/CT is potentially useful for more accurate and reliable measurement of glomerular filtration rate (GFR) than conventional planar scintigraphy. However, manual drawing of a volume of interest (VOI) on renal parenchyma in CT images is a labor-intensive and time-consuming task. The a...
Saved in:
Published in: | Scientific reports 2019-03, Vol.9 (1), p.4223-4223, Article 4223 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantitative SPECT/CT is potentially useful for more accurate and reliable measurement of glomerular filtration rate (GFR) than conventional planar scintigraphy. However, manual drawing of a volume of interest (VOI) on renal parenchyma in CT images is a labor-intensive and time-consuming task. The aim of this study is to develop a fully automated GFR quantification method based on a deep learning approach to the 3D segmentation of kidney parenchyma in CT. We automatically segmented the kidneys in CT images using the proposed method with remarkably high Dice similarity coefficient relative to the manual segmentation (mean = 0.89). The GFR values derived using manual and automatic segmentation methods were strongly correlated (R2 = 0.96). The absolute difference between the individual GFR values using manual and automatic methods was only 2.90%. Moreover, the two segmentation methods had comparable performance in the urolithiasis patients and kidney donors. Furthermore, both segmentation modalities showed significantly decreased individual GFR in symptomatic kidneys compared with the normal or asymptomatic kidney groups. The proposed approach enables fast and accurate GFR measurement. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-40710-7 |