Loading…

Long-Term Stability and Integrity of Plasmid-Based DNA Data Storage

Validation of long-term DNA stability and integrity are essential for the use of DNA in data storage applications. Because of this, we evaluated the plasmid-based DNA data storage in a manner that preserves DNA stability and integrity. A document consisting of 2046 words was encoded with DNA sequenc...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2018-01, Vol.10 (1), p.28
Main Authors: Nguyen, Hoang Hiep, Park, Jeho, Park, Seon Joo, Lee, Chang-Soo, Hwang, Seungwoo, Shin, Yong-Beom, Ha, Tai Hwan, Kim, Moonil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Validation of long-term DNA stability and integrity are essential for the use of DNA in data storage applications. Because of this, we evaluated the plasmid-based DNA data storage in a manner that preserves DNA stability and integrity. A document consisting of 2046 words was encoded with DNA sequences using Perl script, and the encoded DNA sequences were synthesized for information storage. The DNA comprised a total of 22 chemically synthesized DNA fragments with 400 nucleotides each, which were incorporated into a plasmid vector. A long-term DNA stability study demonstrated that 3-year stored plasmid containing text information showed DNA stability at controlled conditions of -20 °C. The plasmid DNA under accelerated aging conditions (AAC) up to 65 °C for 20 days, which corresponds to approximately 20 years of storage at -20 °C, also exhibited no significant differences in DNA stability compared to newly produced plasmid. Also, the 3-year old plasmid stored at -20 °C and the AAC-tested plasmid stored up to 65 °C for 20 days had functional integrity and nucleotide integrity comparable to control sample, thereby allowing for retrieval of the original error-free text data. Finally, the nucleotides were sequenced, and then decoded to retrieve the original data, thereby allowing us to read the text with 100% accuracy, and amplify the DNA with a simple and quick bacterial transformation. To the best of our knowledge, this is the first report on examining the long-term stability and integrity of plasmid-based DNA data storage. Taken together, our results indicate that plasmid DNA data storage can be useful for long-term archival storage to recover the source text in a reproducible and accountable manner.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym10010028