Loading…
Polycomplexes of Hyaluronic Acid and Borates in a Solid State and Solution: Synthesis, Characterization and Perspectives of Application in Boron Neutron Capture Therapy
In this report, we propose a new polyborate fragment synthesis strategy along the whole chain of the polysaccharide hyaluronic acid (HA) to produce boron neutron capture therapy (BNCT) compounds. Under high pressure and deformatory solid-state conditions, polymolecular system formation takes place d...
Saved in:
Published in: | Polymers 2018-02, Vol.10 (2), p.181 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this report, we propose a new polyborate fragment synthesis strategy along the whole chain of the polysaccharide hyaluronic acid (HA) to produce boron neutron capture therapy (BNCT) compounds. Under high pressure and deformatory solid-state conditions, polymolecular system formation takes place due to association of phase-specific transition components into a more or less distinct microscopic organization. Fourier transform infrared (FTIR) spectroscopy shows that HA and polyborates form a network of cyclic polychelate complexes. HA acts as a multidentate ligand using carboxylic and hydroxyl proton donor groups to link oxygen atoms in B⁻O⁻B bonds and borate-anions B⁻O(-): O⁻H···O, O⁻H···(-)O. With free electron pairs in heteroatoms ⁻O(:)···B, ⁻N(:)···B, HA can act simultaneously as an electron donor. Nuclear magnetic resonance (NMR) with
C and ¹H reveals a preserved complex interaction after both solubilizing and attenuating the HA-polyborate system. Stability of the product in water, low cost, ease of synthesis and scalability of manufacturing indicate that HA-polyborate complexes might have advantages over current chemotherapeutic approaches in creating therapeutic agents for BNCT. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym10020181 |