Loading…
The microRNAs let-7 and miR-9 down-regulate the axon-guidance genes Ntn1 and Dcc during peripheral nerve regeneration
Axon guidance helps growing neural axons to follow precise paths to reach their target locations. It is a critical step for both the formation and regeneration of neuronal circuitry. Netrin-1 (Ntn1) and its receptor, deleted in colorectal carcinoma (Dcc) are essential factors for axon guidance, but...
Saved in:
Published in: | The Journal of biological chemistry 2019-03, Vol.294 (10), p.3489-3500 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Axon guidance helps growing neural axons to follow precise paths to reach their target locations. It is a critical step for both the formation and regeneration of neuronal circuitry. Netrin-1 (Ntn1) and its receptor, deleted in colorectal carcinoma (Dcc) are essential factors for axon guidance, but their regulation in this process is incompletely understood. In this study, using quantitative real-time RT-PCR (qRT-PCR) and biochemical and reporter gene assays, we found that the Ntn1 and Dcc genes are both robustly up-regulated in the sciatic nerve stump after peripheral nerve injury. Moreover, we found that the microRNA (miR) let-7 directly targets the Ntn1 transcript by binding to its 3′-untranslated region (3′-UTR), represses Ntn1 expression, and reduces the secretion of Ntn1 protein in Schwann cells. We also identified miR-9 as the regulatory miRNA that directly targets Dcc and found that miR-9 down-regulates Dcc expression and suppresses the migration ability of Schwann cells by regulating Dcc abundance. Functional examination in dorsal root ganglion neurons disclosed that let-7 and miR-9 decrease the protein levels of Ntn1 and Dcc in these neurons, respectively, and reduce axon outgrowth. Moreover, we identified a potential regulatory network comprising let-7, miR-9, Ntn1, Dcc, and related molecules, including the RNA-binding protein Lin-28 homolog A (Lin28), SRC proto-oncogene nonreceptor tyrosine kinase (Src), and the transcription factor NF-κB. In summary, our findings reveal that the miRs let-7 and miR-9 are involved in regulating neuron pathfinding and extend our understanding of the regulatory pathways active during peripheral nerve regeneration. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.RA119.007389 |