Loading…

Oxygen‐dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium

Summary Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC‐like regulators, HilD, HilC and RtsA, form a feed‐forward regulatory loop that activates transcript...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2019-03, Vol.111 (3), p.570-587
Main Authors: Kim, Kyungsub, Golubeva, Yekaterina A., Vanderpool, Carin K., Slauch, James M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4434-6289cb16156c597ecb5f9edca516b81956feeb32db141b5f9029aa51c75872a13
cites cdi_FETCH-LOGICAL-c4434-6289cb16156c597ecb5f9edca516b81956feeb32db141b5f9029aa51c75872a13
container_end_page 587
container_issue 3
container_start_page 570
container_title Molecular microbiology
container_volume 111
creator Kim, Kyungsub
Golubeva, Yekaterina A.
Vanderpool, Carin K.
Slauch, James M.
description Summary Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC‐like regulators, HilD, HilC and RtsA, form a feed‐forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5′ UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low‐aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen. Salmonella is a leading cause of gastrointestinal disease worldwide. Proper temporal and spatial expression of the Salmonella SPI1 type three secretion system is critical for invasion of the host intestinal epithelium. Here, we show that two oxygen‐dependent sRNAs, FnrS and ArcZ, regulate production of the invasion machinery, tuning SPI1 expression to a particular oxygen level consistent with that at the epithelial surface.
doi_str_mv 10.1111/mmi.14174
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6417950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190875470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4434-6289cb16156c597ecb5f9edca516b81956feeb32db141b5f9029aa51c75872a13</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EokNhwQsgS2xgkdaOYyfeIFUVPyO1FNEisbMcz82Mq9hO7aQQVjwCz8iT4OmUCpDwxovz3aN7z0HoKSUHNL9D5-wBrWhd3UMLygQvSsmb-2hBJCcFa8rPe-hRSpeEUEYEe4j2GKmaStJmgb6dfZ3X4H9-_7GCAfwK_IgjrKdejzZ4HDp8_mFJ8TgPgMdNBMAJTIQbMc1pBIfbGSen-x5_fH-UsPX4XPcueOh7jbMdRGt0norhWkd8MQ8b66ZoJ_cYPeh0n-DJ7b-PPr15fXH8rjg5e7s8PjopTFWxqhBlI01LBeXCcFmDaXknYWU0p6JtqOSiA2hZuWpzBFuNlFJn0dS8qUtN2T56tfMdptblwbxT1L0aonU6zipoq_5WvN2odbhWIkeaE8wGL24NYriaII3K2WS293kIU1IlZY1gXHKW0ef_oJdhij6flylJmppX9dbw5Y4yMaQUobtbhhK1bVTlRtVNo5l99uf2d-TvCjNwuAO-2B7m_zup09PlzvIXDSet6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190875470</pqid></control><display><type>article</type><title>Oxygen‐dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium</title><source>Wiley</source><creator>Kim, Kyungsub ; Golubeva, Yekaterina A. ; Vanderpool, Carin K. ; Slauch, James M.</creator><creatorcontrib>Kim, Kyungsub ; Golubeva, Yekaterina A. ; Vanderpool, Carin K. ; Slauch, James M.</creatorcontrib><description>Summary Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC‐like regulators, HilD, HilC and RtsA, form a feed‐forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5′ UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low‐aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen. Salmonella is a leading cause of gastrointestinal disease worldwide. Proper temporal and spatial expression of the Salmonella SPI1 type three secretion system is critical for invasion of the host intestinal epithelium. Here, we show that two oxygen‐dependent sRNAs, FnrS and ArcZ, regulate production of the invasion machinery, tuning SPI1 expression to a particular oxygen level consistent with that at the epithelial surface.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14174</identifier><identifier>PMID: 30484918</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>5' Untranslated Regions ; Aeration ; Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Clonal deletion ; Diarrhea ; DNA Mutational Analysis ; Epithelial cells ; Gene Deletion ; Gene Expression ; Gene Expression Regulation, Bacterial - drug effects ; Gene Regulatory Networks ; Inflammation ; Intestine ; Mice ; Nucleic Acid Hybridization ; Oral infection ; Oxygen ; Oxygen - metabolism ; Pathogenicity ; Pathogens ; Phenotypes ; Regulation ; RNA, Messenger - metabolism ; RNA, Small Untranslated - genetics ; RNA, Small Untranslated - metabolism ; Salmonella ; Salmonella typhimurium - drug effects ; Salmonella typhimurium - genetics ; Secretion ; Transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Translation ; Type III Secretion Systems - biosynthesis ; Type III Secretion Systems - genetics</subject><ispartof>Molecular microbiology, 2019-03, Vol.111 (3), p.570-587</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2019 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4434-6289cb16156c597ecb5f9edca516b81956feeb32db141b5f9029aa51c75872a13</citedby><cites>FETCH-LOGICAL-c4434-6289cb16156c597ecb5f9edca516b81956feeb32db141b5f9029aa51c75872a13</cites><orcidid>0000-0003-4634-9702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30484918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyungsub</creatorcontrib><creatorcontrib>Golubeva, Yekaterina A.</creatorcontrib><creatorcontrib>Vanderpool, Carin K.</creatorcontrib><creatorcontrib>Slauch, James M.</creatorcontrib><title>Oxygen‐dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC‐like regulators, HilD, HilC and RtsA, form a feed‐forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5′ UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low‐aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen. Salmonella is a leading cause of gastrointestinal disease worldwide. Proper temporal and spatial expression of the Salmonella SPI1 type three secretion system is critical for invasion of the host intestinal epithelium. Here, we show that two oxygen‐dependent sRNAs, FnrS and ArcZ, regulate production of the invasion machinery, tuning SPI1 expression to a particular oxygen level consistent with that at the epithelial surface.</description><subject>5' Untranslated Regions</subject><subject>Aeration</subject><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Clonal deletion</subject><subject>Diarrhea</subject><subject>DNA Mutational Analysis</subject><subject>Epithelial cells</subject><subject>Gene Deletion</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Gene Regulatory Networks</subject><subject>Inflammation</subject><subject>Intestine</subject><subject>Mice</subject><subject>Nucleic Acid Hybridization</subject><subject>Oral infection</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Regulation</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Untranslated - genetics</subject><subject>RNA, Small Untranslated - metabolism</subject><subject>Salmonella</subject><subject>Salmonella typhimurium - drug effects</subject><subject>Salmonella typhimurium - genetics</subject><subject>Secretion</subject><subject>Transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Translation</subject><subject>Type III Secretion Systems - biosynthesis</subject><subject>Type III Secretion Systems - genetics</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhS0EokNhwQsgS2xgkdaOYyfeIFUVPyO1FNEisbMcz82Mq9hO7aQQVjwCz8iT4OmUCpDwxovz3aN7z0HoKSUHNL9D5-wBrWhd3UMLygQvSsmb-2hBJCcFa8rPe-hRSpeEUEYEe4j2GKmaStJmgb6dfZ3X4H9-_7GCAfwK_IgjrKdejzZ4HDp8_mFJ8TgPgMdNBMAJTIQbMc1pBIfbGSen-x5_fH-UsPX4XPcueOh7jbMdRGt0norhWkd8MQ8b66ZoJ_cYPeh0n-DJ7b-PPr15fXH8rjg5e7s8PjopTFWxqhBlI01LBeXCcFmDaXknYWU0p6JtqOSiA2hZuWpzBFuNlFJn0dS8qUtN2T56tfMdptblwbxT1L0aonU6zipoq_5WvN2odbhWIkeaE8wGL24NYriaII3K2WS293kIU1IlZY1gXHKW0ef_oJdhij6flylJmppX9dbw5Y4yMaQUobtbhhK1bVTlRtVNo5l99uf2d-TvCjNwuAO-2B7m_zup09PlzvIXDSet6Q</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Kim, Kyungsub</creator><creator>Golubeva, Yekaterina A.</creator><creator>Vanderpool, Carin K.</creator><creator>Slauch, James M.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4634-9702</orcidid></search><sort><creationdate>201903</creationdate><title>Oxygen‐dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium</title><author>Kim, Kyungsub ; Golubeva, Yekaterina A. ; Vanderpool, Carin K. ; Slauch, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4434-6289cb16156c597ecb5f9edca516b81956feeb32db141b5f9029aa51c75872a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>5' Untranslated Regions</topic><topic>Aeration</topic><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Clonal deletion</topic><topic>Diarrhea</topic><topic>DNA Mutational Analysis</topic><topic>Epithelial cells</topic><topic>Gene Deletion</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Gene Regulatory Networks</topic><topic>Inflammation</topic><topic>Intestine</topic><topic>Mice</topic><topic>Nucleic Acid Hybridization</topic><topic>Oral infection</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Regulation</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Untranslated - genetics</topic><topic>RNA, Small Untranslated - metabolism</topic><topic>Salmonella</topic><topic>Salmonella typhimurium - drug effects</topic><topic>Salmonella typhimurium - genetics</topic><topic>Secretion</topic><topic>Transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Translation</topic><topic>Type III Secretion Systems - biosynthesis</topic><topic>Type III Secretion Systems - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyungsub</creatorcontrib><creatorcontrib>Golubeva, Yekaterina A.</creatorcontrib><creatorcontrib>Vanderpool, Carin K.</creatorcontrib><creatorcontrib>Slauch, James M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyungsub</au><au>Golubeva, Yekaterina A.</au><au>Vanderpool, Carin K.</au><au>Slauch, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen‐dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2019-03</date><risdate>2019</risdate><volume>111</volume><issue>3</issue><spage>570</spage><epage>587</epage><pages>570-587</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC‐like regulators, HilD, HilC and RtsA, form a feed‐forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5′ UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low‐aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen. Salmonella is a leading cause of gastrointestinal disease worldwide. Proper temporal and spatial expression of the Salmonella SPI1 type three secretion system is critical for invasion of the host intestinal epithelium. Here, we show that two oxygen‐dependent sRNAs, FnrS and ArcZ, regulate production of the invasion machinery, tuning SPI1 expression to a particular oxygen level consistent with that at the epithelial surface.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30484918</pmid><doi>10.1111/mmi.14174</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0003-4634-9702</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2019-03, Vol.111 (3), p.570-587
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6417950
source Wiley
subjects 5' Untranslated Regions
Aeration
Animals
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Clonal deletion
Diarrhea
DNA Mutational Analysis
Epithelial cells
Gene Deletion
Gene Expression
Gene Expression Regulation, Bacterial - drug effects
Gene Regulatory Networks
Inflammation
Intestine
Mice
Nucleic Acid Hybridization
Oral infection
Oxygen
Oxygen - metabolism
Pathogenicity
Pathogens
Phenotypes
Regulation
RNA, Messenger - metabolism
RNA, Small Untranslated - genetics
RNA, Small Untranslated - metabolism
Salmonella
Salmonella typhimurium - drug effects
Salmonella typhimurium - genetics
Secretion
Transcription
Transcription Factors - genetics
Transcription Factors - metabolism
Translation
Type III Secretion Systems - biosynthesis
Type III Secretion Systems - genetics
title Oxygen‐dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%E2%80%90dependent%20regulation%20of%20SPI1%20type%20three%20secretion%20system%20by%20small%20RNAs%20in%20Salmonella%20enterica%20serovar%20Typhimurium&rft.jtitle=Molecular%20microbiology&rft.au=Kim,%20Kyungsub&rft.date=2019-03&rft.volume=111&rft.issue=3&rft.spage=570&rft.epage=587&rft.pages=570-587&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14174&rft_dat=%3Cproquest_pubme%3E2190875470%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4434-6289cb16156c597ecb5f9edca516b81956feeb32db141b5f9029aa51c75872a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190875470&rft_id=info:pmid/30484918&rfr_iscdi=true