Loading…
Insights into histidine kinase activation mechanisms from the monomeric blue light sensor EL346
Translation of environmental cues into cellular behavior is a necessary process in all forms of life. In bacteria, this process frequently involves two-component systems in which a sensor histidine kinase (HK) autophosphorylates in response to a stimulus before subsequently transferring the phosphor...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2019-03, Vol.116 (11), p.4963-4972 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-a0f00d55a8004b73349c2c1e8be0b8d450e0c5cbcf1ae6db546b682cf91c0aed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-a0f00d55a8004b73349c2c1e8be0b8d450e0c5cbcf1ae6db546b682cf91c0aed3 |
container_end_page | 4972 |
container_issue | 11 |
container_start_page | 4963 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Dikiy, Igor Edupuganti, Uthama R. Abzalimov, Rinat R. Borbat, Peter P. Srivastava, Madhur Freed, Jack H. Gardner, Kevin H. |
description | Translation of environmental cues into cellular behavior is a necessary process in all forms of life. In bacteria, this process frequently involves two-component systems in which a sensor histidine kinase (HK) autophosphorylates in response to a stimulus before subsequently transferring the phosphoryl group to a response regulator that controls downstream effectors. Many details of the molecular mechanisms of HK activation are still unclear due to complications associated with the multiple signaling states of these large, multidomain proteins. To address these challenges, we combined complementary solution biophysical approaches to examine the conformational changes upon activation of a minimal, blue-light–sensing histidine kinase from Erythrobacter litoralis HTCC2594, EL346. Our data show that multiple conformations coexist in the dark state of EL346 in solution, which may explain the enzyme’s residual dark-state activity. We also observe that activation involves destabilization of the helices in the dimerization and histidine phosphotransfer-like domain, where the phosphoacceptor histidine resides, and their interactions with the catalytic domain. Similar light-induced changes occur to some extent even in constitutively active or inactive mutants, showing that light sensing can be decoupled from activation of kinase activity. These structural changes mirror those inferred by comparing X-ray crystal structures of inactive and active HK fragments, suggesting that they are at the core of conformational changes leading to HK activation. More broadly, our findings uncover surprising complexity in this simple system and allow us to outline a mechanism of the multiple steps of HK activation. |
doi_str_mv | 10.1073/pnas.1813586116 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6421462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26672194</jstor_id><sourcerecordid>26672194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a0f00d55a8004b73349c2c1e8be0b8d450e0c5cbcf1ae6db546b682cf91c0aed3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EotvCmRPIEpde0o4_4jgXpKoqUGklLnC2HGfSeEnsxXYq8e_JasvycZrDPPPMjF5C3jC4YtCI632w-YppJmqtGFPPyIZByyolW3hONgC8qbTk8oyc57wDgLbW8JKcCdCgNTQbYu5D9g9jydSHEunoc_G9D0i_-1WN1LriH23xMdAZ3WiDz3OmQ4ozLSPSOYY4Y_KOdtOCdDqoaMaQY6J3WyHVK_JisFPG10_1gnz7ePf19nO1_fLp_vZmWzkpRaksDAB9XVsNILtGCNk67hjqDqHTvawBwdWucwOzqPqulqpTmruhZQ4s9uKCfDh690s3Y-8wlGQns09-tumnidabfzvBj-YhPholOZOKr4LLJ0GKPxbMxcw-O5wmGzAu2XCmleK8lWxF3_-H7uKSwvreSq0AaFnrlbo-Ui7FnBMOp2MYmEN45hCe-RPeOvHu7x9O_O-0VuDtEdjlEtOpz5VqDovFL63AoTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194108458</pqid></control><display><type>article</type><title>Insights into histidine kinase activation mechanisms from the monomeric blue light sensor EL346</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Dikiy, Igor ; Edupuganti, Uthama R. ; Abzalimov, Rinat R. ; Borbat, Peter P. ; Srivastava, Madhur ; Freed, Jack H. ; Gardner, Kevin H.</creator><creatorcontrib>Dikiy, Igor ; Edupuganti, Uthama R. ; Abzalimov, Rinat R. ; Borbat, Peter P. ; Srivastava, Madhur ; Freed, Jack H. ; Gardner, Kevin H.</creatorcontrib><description>Translation of environmental cues into cellular behavior is a necessary process in all forms of life. In bacteria, this process frequently involves two-component systems in which a sensor histidine kinase (HK) autophosphorylates in response to a stimulus before subsequently transferring the phosphoryl group to a response regulator that controls downstream effectors. Many details of the molecular mechanisms of HK activation are still unclear due to complications associated with the multiple signaling states of these large, multidomain proteins. To address these challenges, we combined complementary solution biophysical approaches to examine the conformational changes upon activation of a minimal, blue-light–sensing histidine kinase from Erythrobacter litoralis HTCC2594, EL346. Our data show that multiple conformations coexist in the dark state of EL346 in solution, which may explain the enzyme’s residual dark-state activity. We also observe that activation involves destabilization of the helices in the dimerization and histidine phosphotransfer-like domain, where the phosphoacceptor histidine resides, and their interactions with the catalytic domain. Similar light-induced changes occur to some extent even in constitutively active or inactive mutants, showing that light sensing can be decoupled from activation of kinase activity. These structural changes mirror those inferred by comparing X-ray crystal structures of inactive and active HK fragments, suggesting that they are at the core of conformational changes leading to HK activation. More broadly, our findings uncover surprising complexity in this simple system and allow us to outline a mechanism of the multiple steps of HK activation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1813586116</identifier><identifier>PMID: 30808807</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation ; Adenosine Diphosphate - metabolism ; Biological Sciences ; Catalysis ; Complications ; Crystal structure ; Darkness ; Destabilization ; Dimerization ; Enzyme Activation - radiation effects ; Helices ; Histidine ; Histidine kinase ; Histidine Kinase - chemistry ; Histidine Kinase - metabolism ; Kinases ; Light ; Models, Molecular ; Molecular modelling ; Mutants ; Mutation - genetics ; PNAS Plus ; Protein Domains ; Protein Stability ; Protein Structure, Secondary ; Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (11), p.4963-4972</ispartof><rights>Copyright National Academy of Sciences Mar 12, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a0f00d55a8004b73349c2c1e8be0b8d450e0c5cbcf1ae6db546b682cf91c0aed3</citedby><cites>FETCH-LOGICAL-c443t-a0f00d55a8004b73349c2c1e8be0b8d450e0c5cbcf1ae6db546b682cf91c0aed3</cites><orcidid>0000-0002-8671-2556 ; 0000-0002-8155-7788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26672194$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26672194$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30808807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dikiy, Igor</creatorcontrib><creatorcontrib>Edupuganti, Uthama R.</creatorcontrib><creatorcontrib>Abzalimov, Rinat R.</creatorcontrib><creatorcontrib>Borbat, Peter P.</creatorcontrib><creatorcontrib>Srivastava, Madhur</creatorcontrib><creatorcontrib>Freed, Jack H.</creatorcontrib><creatorcontrib>Gardner, Kevin H.</creatorcontrib><title>Insights into histidine kinase activation mechanisms from the monomeric blue light sensor EL346</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Translation of environmental cues into cellular behavior is a necessary process in all forms of life. In bacteria, this process frequently involves two-component systems in which a sensor histidine kinase (HK) autophosphorylates in response to a stimulus before subsequently transferring the phosphoryl group to a response regulator that controls downstream effectors. Many details of the molecular mechanisms of HK activation are still unclear due to complications associated with the multiple signaling states of these large, multidomain proteins. To address these challenges, we combined complementary solution biophysical approaches to examine the conformational changes upon activation of a minimal, blue-light–sensing histidine kinase from Erythrobacter litoralis HTCC2594, EL346. Our data show that multiple conformations coexist in the dark state of EL346 in solution, which may explain the enzyme’s residual dark-state activity. We also observe that activation involves destabilization of the helices in the dimerization and histidine phosphotransfer-like domain, where the phosphoacceptor histidine resides, and their interactions with the catalytic domain. Similar light-induced changes occur to some extent even in constitutively active or inactive mutants, showing that light sensing can be decoupled from activation of kinase activity. These structural changes mirror those inferred by comparing X-ray crystal structures of inactive and active HK fragments, suggesting that they are at the core of conformational changes leading to HK activation. More broadly, our findings uncover surprising complexity in this simple system and allow us to outline a mechanism of the multiple steps of HK activation.</description><subject>Activation</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Complications</subject><subject>Crystal structure</subject><subject>Darkness</subject><subject>Destabilization</subject><subject>Dimerization</subject><subject>Enzyme Activation - radiation effects</subject><subject>Helices</subject><subject>Histidine</subject><subject>Histidine kinase</subject><subject>Histidine Kinase - chemistry</subject><subject>Histidine Kinase - metabolism</subject><subject>Kinases</subject><subject>Light</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>Mutants</subject><subject>Mutation - genetics</subject><subject>PNAS Plus</subject><subject>Protein Domains</subject><subject>Protein Stability</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EotvCmRPIEpde0o4_4jgXpKoqUGklLnC2HGfSeEnsxXYq8e_JasvycZrDPPPMjF5C3jC4YtCI632w-YppJmqtGFPPyIZByyolW3hONgC8qbTk8oyc57wDgLbW8JKcCdCgNTQbYu5D9g9jydSHEunoc_G9D0i_-1WN1LriH23xMdAZ3WiDz3OmQ4ozLSPSOYY4Y_KOdtOCdDqoaMaQY6J3WyHVK_JisFPG10_1gnz7ePf19nO1_fLp_vZmWzkpRaksDAB9XVsNILtGCNk67hjqDqHTvawBwdWucwOzqPqulqpTmruhZQ4s9uKCfDh690s3Y-8wlGQns09-tumnidabfzvBj-YhPholOZOKr4LLJ0GKPxbMxcw-O5wmGzAu2XCmleK8lWxF3_-H7uKSwvreSq0AaFnrlbo-Ui7FnBMOp2MYmEN45hCe-RPeOvHu7x9O_O-0VuDtEdjlEtOpz5VqDovFL63AoTQ</recordid><startdate>20190312</startdate><enddate>20190312</enddate><creator>Dikiy, Igor</creator><creator>Edupuganti, Uthama R.</creator><creator>Abzalimov, Rinat R.</creator><creator>Borbat, Peter P.</creator><creator>Srivastava, Madhur</creator><creator>Freed, Jack H.</creator><creator>Gardner, Kevin H.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8671-2556</orcidid><orcidid>https://orcid.org/0000-0002-8155-7788</orcidid></search><sort><creationdate>20190312</creationdate><title>Insights into histidine kinase activation mechanisms from the monomeric blue light sensor EL346</title><author>Dikiy, Igor ; Edupuganti, Uthama R. ; Abzalimov, Rinat R. ; Borbat, Peter P. ; Srivastava, Madhur ; Freed, Jack H. ; Gardner, Kevin H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a0f00d55a8004b73349c2c1e8be0b8d450e0c5cbcf1ae6db546b682cf91c0aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Complications</topic><topic>Crystal structure</topic><topic>Darkness</topic><topic>Destabilization</topic><topic>Dimerization</topic><topic>Enzyme Activation - radiation effects</topic><topic>Helices</topic><topic>Histidine</topic><topic>Histidine kinase</topic><topic>Histidine Kinase - chemistry</topic><topic>Histidine Kinase - metabolism</topic><topic>Kinases</topic><topic>Light</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>Mutants</topic><topic>Mutation - genetics</topic><topic>PNAS Plus</topic><topic>Protein Domains</topic><topic>Protein Stability</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dikiy, Igor</creatorcontrib><creatorcontrib>Edupuganti, Uthama R.</creatorcontrib><creatorcontrib>Abzalimov, Rinat R.</creatorcontrib><creatorcontrib>Borbat, Peter P.</creatorcontrib><creatorcontrib>Srivastava, Madhur</creatorcontrib><creatorcontrib>Freed, Jack H.</creatorcontrib><creatorcontrib>Gardner, Kevin H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dikiy, Igor</au><au>Edupuganti, Uthama R.</au><au>Abzalimov, Rinat R.</au><au>Borbat, Peter P.</au><au>Srivastava, Madhur</au><au>Freed, Jack H.</au><au>Gardner, Kevin H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into histidine kinase activation mechanisms from the monomeric blue light sensor EL346</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-03-12</date><risdate>2019</risdate><volume>116</volume><issue>11</issue><spage>4963</spage><epage>4972</epage><pages>4963-4972</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Translation of environmental cues into cellular behavior is a necessary process in all forms of life. In bacteria, this process frequently involves two-component systems in which a sensor histidine kinase (HK) autophosphorylates in response to a stimulus before subsequently transferring the phosphoryl group to a response regulator that controls downstream effectors. Many details of the molecular mechanisms of HK activation are still unclear due to complications associated with the multiple signaling states of these large, multidomain proteins. To address these challenges, we combined complementary solution biophysical approaches to examine the conformational changes upon activation of a minimal, blue-light–sensing histidine kinase from Erythrobacter litoralis HTCC2594, EL346. Our data show that multiple conformations coexist in the dark state of EL346 in solution, which may explain the enzyme’s residual dark-state activity. We also observe that activation involves destabilization of the helices in the dimerization and histidine phosphotransfer-like domain, where the phosphoacceptor histidine resides, and their interactions with the catalytic domain. Similar light-induced changes occur to some extent even in constitutively active or inactive mutants, showing that light sensing can be decoupled from activation of kinase activity. These structural changes mirror those inferred by comparing X-ray crystal structures of inactive and active HK fragments, suggesting that they are at the core of conformational changes leading to HK activation. More broadly, our findings uncover surprising complexity in this simple system and allow us to outline a mechanism of the multiple steps of HK activation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30808807</pmid><doi>10.1073/pnas.1813586116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8671-2556</orcidid><orcidid>https://orcid.org/0000-0002-8155-7788</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (11), p.4963-4972 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6421462 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Activation Adenosine Diphosphate - metabolism Biological Sciences Catalysis Complications Crystal structure Darkness Destabilization Dimerization Enzyme Activation - radiation effects Helices Histidine Histidine kinase Histidine Kinase - chemistry Histidine Kinase - metabolism Kinases Light Models, Molecular Molecular modelling Mutants Mutation - genetics PNAS Plus Protein Domains Protein Stability Protein Structure, Secondary Proteins |
title | Insights into histidine kinase activation mechanisms from the monomeric blue light sensor EL346 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20histidine%20kinase%20activation%20mechanisms%20from%20the%20monomeric%20blue%20light%20sensor%20EL346&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dikiy,%20Igor&rft.date=2019-03-12&rft.volume=116&rft.issue=11&rft.spage=4963&rft.epage=4972&rft.pages=4963-4972&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1813586116&rft_dat=%3Cjstor_pubme%3E26672194%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-a0f00d55a8004b73349c2c1e8be0b8d450e0c5cbcf1ae6db546b682cf91c0aed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194108458&rft_id=info:pmid/30808807&rft_jstor_id=26672194&rfr_iscdi=true |