Loading…

The DNA damage induced by the Cytosine Deaminase APOBEC3A Leads to the production of ROS

Human apolipoprotein B mRNA-editing catalytic polypeptide-like 3 proteins (APOBEC3s or A3s) are cytosine deaminases that protect cells by introducing promutagenic uraciles in invading retro-elements. However as a drawback of this protective activity, A3s can also target cellular DNA, leading to DNA...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-03, Vol.9 (1), p.4714, Article 4714
Main Authors: Niocel, Mathilde, Appourchaux, Romain, Nguyen, Xuan-Nhi, Delpeuch, Mathilde, Cimarelli, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human apolipoprotein B mRNA-editing catalytic polypeptide-like 3 proteins (APOBEC3s or A3s) are cytosine deaminases that protect cells by introducing promutagenic uraciles in invading retro-elements. However as a drawback of this protective activity, A3s can also target cellular DNA, leading to DNA damage and to the accumulation of somatic mutations that may contribute to tumorigenesis. Among A3s, A3A has been shown to be particularly proficient at mutagenizing cellular DNA, but whether this enzyme exerts additional effects on the cellular physiology remains unclear. Here, we show that A3A editing of cellular DNA leads to reactive oxygen species (ROS) production through Nox-enzymes. ROS production occurs in two distinct model cell lines and it is contingent upon DNA replication and intact enzymatic properties of A3A. For the first time, our results indicate that the editing activity of A3A results in the induction of a pro-inflammatory state that may possibly contribute to the constitution of a tumorigenic-prone environment.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-40941-8