Loading…

A role for autophagy in long‐term spatial memory formation in male rodents

A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience research 2018-03, Vol.96 (3), p.416-426
Main Authors: Hylin, Michael J., Zhao, Jing, Tangavelou, Karthikeyan, Rozas, Natalia S., Hood, Kimberly N., MacGowan, Jacalyn S., Moore, Anthony N., Dash, Pramod K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43
cites cdi_FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43
container_end_page 426
container_issue 3
container_start_page 416
container_title Journal of neuroscience research
container_volume 96
creator Hylin, Michael J.
Zhao, Jing
Tangavelou, Karthikeyan
Rozas, Natalia S.
Hood, Kimberly N.
MacGowan, Jacalyn S.
Moore, Anthony N.
Dash, Pramod K.
description A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long‐term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc‐51‐like autophagy activating kinase‐1 (Ulk‐1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long‐term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long‐term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP‐LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3‐methyladenine (3‐MA) or Spautin‐1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT‐Beclin‐1) improved long‐term memory. These results indicate that autophagy is not necessary for learning, but is required for long‐term memory formation. Using GFP‐LC3 transgenic mice, we provide evidence that spatial learning increases autophagosome formation in hippocampal neurons. Further, we show that intrahippocampal infusion of inhibitors of autophagy do not affect spatial learning, but impair long‐term spatial memory. In contrast, post‐training infusion of the activator of autophagy Tat‐Beclin1 peptide improves long‐term memory.
doi_str_mv 10.1002/jnr.24121
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6425965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986601181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43</originalsourceid><addsrcrecordid>eNp1kd9KwzAUh4Mobk4vfAEpeKMXnUnapMmNMIZ_GQqi1yFtz7aOtplJq-zOR_AZfRIzN4cKXoRDcr58OeGH0CHBfYIxPZvVtk9jQskW6hIskzBmcbKNujjiOIwxoR2059wMYywli3ZRh0oaYcFYF40GgTUlBGNjA902Zj7Vk0VQ1EFp6snH23sDtgrcXDeFLoMKKmMXS7byB6ZecpX2t63JoW7cPtoZ69LBwbr20NPlxePwOhzdX90MB6MwY1iSELSAXJCEJiSiwIFHlHJNsd-lMuU0ASx4CjnViYBESJpmLNVU8CiVIs3jqIfOV955m1aQZ_5tq0s1t0Wl7UIZXajfnbqYqol5UTymTHLmBSdrgTXPLbhGVYXLoCx1DaZ1isiESb8i6dHjP-jMtLb23_OU4BwTIoinTldUZo1zFsabYQhWy4yUz0h9ZeTZo5_Tb8jvUDxwtgJeixIW_5vU7d3DSvkJXxKcCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986601181</pqid></control><display><type>article</type><title>A role for autophagy in long‐term spatial memory formation in male rodents</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hylin, Michael J. ; Zhao, Jing ; Tangavelou, Karthikeyan ; Rozas, Natalia S. ; Hood, Kimberly N. ; MacGowan, Jacalyn S. ; Moore, Anthony N. ; Dash, Pramod K.</creator><creatorcontrib>Hylin, Michael J. ; Zhao, Jing ; Tangavelou, Karthikeyan ; Rozas, Natalia S. ; Hood, Kimberly N. ; MacGowan, Jacalyn S. ; Moore, Anthony N. ; Dash, Pramod K.</creatorcontrib><description>A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long‐term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc‐51‐like autophagy activating kinase‐1 (Ulk‐1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long‐term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long‐term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP‐LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3‐methyladenine (3‐MA) or Spautin‐1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT‐Beclin‐1) improved long‐term memory. These results indicate that autophagy is not necessary for learning, but is required for long‐term memory formation. Using GFP‐LC3 transgenic mice, we provide evidence that spatial learning increases autophagosome formation in hippocampal neurons. Further, we show that intrahippocampal infusion of inhibitors of autophagy do not affect spatial learning, but impair long‐term spatial memory. In contrast, post‐training infusion of the activator of autophagy Tat‐Beclin1 peptide improves long‐term memory.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.24121</identifier><identifier>PMID: 29230855</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adenine - analogs &amp; derivatives ; Adenine - pharmacology ; Animal memory ; Animals ; Antigens, Nuclear - metabolism ; Autophagy ; Autophagy - drug effects ; Autophagy - physiology ; Beclin-1 - metabolism ; Benzylamines - pharmacology ; Drugs ; Glial Fibrillary Acidic Protein - metabolism ; hippocampus ; Hippocampus - cytology ; Hippocampus - drug effects ; Hippocampus - metabolism ; Inhibitors ; Learning ; Long term memory ; Male ; Maze learning ; Maze Learning - drug effects ; Maze Learning - physiology ; Memory tasks ; Memory, Long-Term - drug effects ; Memory, Long-Term - physiology ; Memory, Short-Term - drug effects ; Memory, Short-Term - physiology ; Mice ; Microtubule-Associated Proteins - metabolism ; Nerve Tissue Proteins - metabolism ; Phagocytosis ; Phagosomes ; Phosphatidylinositol 3-Kinase - metabolism ; Phosphorylation ; Protein biosynthesis ; Protein synthesis ; Proteins ; Quinazolines - pharmacology ; Rapamycin ; Rats ; Rats, Long-Evans ; Recall ; Rodents ; Short term ; Short term memory ; Spatial analysis ; Spatial memory ; Spatial Memory - drug effects ; Spatial Memory - physiology ; TOR protein ; Training ; water maze</subject><ispartof>Journal of neuroscience research, 2018-03, Vol.96 (3), p.416-426</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43</citedby><cites>FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43</cites><orcidid>0000-0002-0426-7242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29230855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hylin, Michael J.</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Tangavelou, Karthikeyan</creatorcontrib><creatorcontrib>Rozas, Natalia S.</creatorcontrib><creatorcontrib>Hood, Kimberly N.</creatorcontrib><creatorcontrib>MacGowan, Jacalyn S.</creatorcontrib><creatorcontrib>Moore, Anthony N.</creatorcontrib><creatorcontrib>Dash, Pramod K.</creatorcontrib><title>A role for autophagy in long‐term spatial memory formation in male rodents</title><title>Journal of neuroscience research</title><addtitle>J Neurosci Res</addtitle><description>A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long‐term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc‐51‐like autophagy activating kinase‐1 (Ulk‐1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long‐term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long‐term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP‐LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3‐methyladenine (3‐MA) or Spautin‐1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT‐Beclin‐1) improved long‐term memory. These results indicate that autophagy is not necessary for learning, but is required for long‐term memory formation. Using GFP‐LC3 transgenic mice, we provide evidence that spatial learning increases autophagosome formation in hippocampal neurons. Further, we show that intrahippocampal infusion of inhibitors of autophagy do not affect spatial learning, but impair long‐term spatial memory. In contrast, post‐training infusion of the activator of autophagy Tat‐Beclin1 peptide improves long‐term memory.</description><subject>Adenine - analogs &amp; derivatives</subject><subject>Adenine - pharmacology</subject><subject>Animal memory</subject><subject>Animals</subject><subject>Antigens, Nuclear - metabolism</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - physiology</subject><subject>Beclin-1 - metabolism</subject><subject>Benzylamines - pharmacology</subject><subject>Drugs</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Inhibitors</subject><subject>Learning</subject><subject>Long term memory</subject><subject>Male</subject><subject>Maze learning</subject><subject>Maze Learning - drug effects</subject><subject>Maze Learning - physiology</subject><subject>Memory tasks</subject><subject>Memory, Long-Term - drug effects</subject><subject>Memory, Long-Term - physiology</subject><subject>Memory, Short-Term - drug effects</subject><subject>Memory, Short-Term - physiology</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Phagocytosis</subject><subject>Phagosomes</subject><subject>Phosphatidylinositol 3-Kinase - metabolism</subject><subject>Phosphorylation</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Quinazolines - pharmacology</subject><subject>Rapamycin</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Recall</subject><subject>Rodents</subject><subject>Short term</subject><subject>Short term memory</subject><subject>Spatial analysis</subject><subject>Spatial memory</subject><subject>Spatial Memory - drug effects</subject><subject>Spatial Memory - physiology</subject><subject>TOR protein</subject><subject>Training</subject><subject>water maze</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kd9KwzAUh4Mobk4vfAEpeKMXnUnapMmNMIZ_GQqi1yFtz7aOtplJq-zOR_AZfRIzN4cKXoRDcr58OeGH0CHBfYIxPZvVtk9jQskW6hIskzBmcbKNujjiOIwxoR2059wMYywli3ZRh0oaYcFYF40GgTUlBGNjA902Zj7Vk0VQ1EFp6snH23sDtgrcXDeFLoMKKmMXS7byB6ZecpX2t63JoW7cPtoZ69LBwbr20NPlxePwOhzdX90MB6MwY1iSELSAXJCEJiSiwIFHlHJNsd-lMuU0ASx4CjnViYBESJpmLNVU8CiVIs3jqIfOV955m1aQZ_5tq0s1t0Wl7UIZXajfnbqYqol5UTymTHLmBSdrgTXPLbhGVYXLoCx1DaZ1isiESb8i6dHjP-jMtLb23_OU4BwTIoinTldUZo1zFsabYQhWy4yUz0h9ZeTZo5_Tb8jvUDxwtgJeixIW_5vU7d3DSvkJXxKcCg</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Hylin, Michael J.</creator><creator>Zhao, Jing</creator><creator>Tangavelou, Karthikeyan</creator><creator>Rozas, Natalia S.</creator><creator>Hood, Kimberly N.</creator><creator>MacGowan, Jacalyn S.</creator><creator>Moore, Anthony N.</creator><creator>Dash, Pramod K.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0426-7242</orcidid></search><sort><creationdate>201803</creationdate><title>A role for autophagy in long‐term spatial memory formation in male rodents</title><author>Hylin, Michael J. ; Zhao, Jing ; Tangavelou, Karthikeyan ; Rozas, Natalia S. ; Hood, Kimberly N. ; MacGowan, Jacalyn S. ; Moore, Anthony N. ; Dash, Pramod K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenine - analogs &amp; derivatives</topic><topic>Adenine - pharmacology</topic><topic>Animal memory</topic><topic>Animals</topic><topic>Antigens, Nuclear - metabolism</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - physiology</topic><topic>Beclin-1 - metabolism</topic><topic>Benzylamines - pharmacology</topic><topic>Drugs</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Inhibitors</topic><topic>Learning</topic><topic>Long term memory</topic><topic>Male</topic><topic>Maze learning</topic><topic>Maze Learning - drug effects</topic><topic>Maze Learning - physiology</topic><topic>Memory tasks</topic><topic>Memory, Long-Term - drug effects</topic><topic>Memory, Long-Term - physiology</topic><topic>Memory, Short-Term - drug effects</topic><topic>Memory, Short-Term - physiology</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Phagocytosis</topic><topic>Phagosomes</topic><topic>Phosphatidylinositol 3-Kinase - metabolism</topic><topic>Phosphorylation</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Quinazolines - pharmacology</topic><topic>Rapamycin</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Recall</topic><topic>Rodents</topic><topic>Short term</topic><topic>Short term memory</topic><topic>Spatial analysis</topic><topic>Spatial memory</topic><topic>Spatial Memory - drug effects</topic><topic>Spatial Memory - physiology</topic><topic>TOR protein</topic><topic>Training</topic><topic>water maze</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hylin, Michael J.</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Tangavelou, Karthikeyan</creatorcontrib><creatorcontrib>Rozas, Natalia S.</creatorcontrib><creatorcontrib>Hood, Kimberly N.</creatorcontrib><creatorcontrib>MacGowan, Jacalyn S.</creatorcontrib><creatorcontrib>Moore, Anthony N.</creatorcontrib><creatorcontrib>Dash, Pramod K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hylin, Michael J.</au><au>Zhao, Jing</au><au>Tangavelou, Karthikeyan</au><au>Rozas, Natalia S.</au><au>Hood, Kimberly N.</au><au>MacGowan, Jacalyn S.</au><au>Moore, Anthony N.</au><au>Dash, Pramod K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A role for autophagy in long‐term spatial memory formation in male rodents</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J Neurosci Res</addtitle><date>2018-03</date><risdate>2018</risdate><volume>96</volume><issue>3</issue><spage>416</spage><epage>426</epage><pages>416-426</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long‐term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc‐51‐like autophagy activating kinase‐1 (Ulk‐1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long‐term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long‐term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP‐LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3‐methyladenine (3‐MA) or Spautin‐1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT‐Beclin‐1) improved long‐term memory. These results indicate that autophagy is not necessary for learning, but is required for long‐term memory formation. Using GFP‐LC3 transgenic mice, we provide evidence that spatial learning increases autophagosome formation in hippocampal neurons. Further, we show that intrahippocampal infusion of inhibitors of autophagy do not affect spatial learning, but impair long‐term spatial memory. In contrast, post‐training infusion of the activator of autophagy Tat‐Beclin1 peptide improves long‐term memory.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29230855</pmid><doi>10.1002/jnr.24121</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0426-7242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2018-03, Vol.96 (3), p.416-426
issn 0360-4012
1097-4547
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6425965
source Wiley-Blackwell Read & Publish Collection
subjects Adenine - analogs & derivatives
Adenine - pharmacology
Animal memory
Animals
Antigens, Nuclear - metabolism
Autophagy
Autophagy - drug effects
Autophagy - physiology
Beclin-1 - metabolism
Benzylamines - pharmacology
Drugs
Glial Fibrillary Acidic Protein - metabolism
hippocampus
Hippocampus - cytology
Hippocampus - drug effects
Hippocampus - metabolism
Inhibitors
Learning
Long term memory
Male
Maze learning
Maze Learning - drug effects
Maze Learning - physiology
Memory tasks
Memory, Long-Term - drug effects
Memory, Long-Term - physiology
Memory, Short-Term - drug effects
Memory, Short-Term - physiology
Mice
Microtubule-Associated Proteins - metabolism
Nerve Tissue Proteins - metabolism
Phagocytosis
Phagosomes
Phosphatidylinositol 3-Kinase - metabolism
Phosphorylation
Protein biosynthesis
Protein synthesis
Proteins
Quinazolines - pharmacology
Rapamycin
Rats
Rats, Long-Evans
Recall
Rodents
Short term
Short term memory
Spatial analysis
Spatial memory
Spatial Memory - drug effects
Spatial Memory - physiology
TOR protein
Training
water maze
title A role for autophagy in long‐term spatial memory formation in male rodents
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20role%20for%20autophagy%20in%20long%E2%80%90term%20spatial%20memory%20formation%20in%20male%20rodents&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Hylin,%20Michael%20J.&rft.date=2018-03&rft.volume=96&rft.issue=3&rft.spage=416&rft.epage=426&rft.pages=416-426&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.24121&rft_dat=%3Cproquest_pubme%3E1986601181%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1986601181&rft_id=info:pmid/29230855&rfr_iscdi=true