Loading…
A role for autophagy in long‐term spatial memory formation in male rodents
A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown t...
Saved in:
Published in: | Journal of neuroscience research 2018-03, Vol.96 (3), p.416-426 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43 |
---|---|
cites | cdi_FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43 |
container_end_page | 426 |
container_issue | 3 |
container_start_page | 416 |
container_title | Journal of neuroscience research |
container_volume | 96 |
creator | Hylin, Michael J. Zhao, Jing Tangavelou, Karthikeyan Rozas, Natalia S. Hood, Kimberly N. MacGowan, Jacalyn S. Moore, Anthony N. Dash, Pramod K. |
description | A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long‐term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc‐51‐like autophagy activating kinase‐1 (Ulk‐1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long‐term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long‐term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP‐LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3‐methyladenine (3‐MA) or Spautin‐1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT‐Beclin‐1) improved long‐term memory. These results indicate that autophagy is not necessary for learning, but is required for long‐term memory formation.
Using GFP‐LC3 transgenic mice, we provide evidence that spatial learning increases autophagosome formation in hippocampal neurons. Further, we show that intrahippocampal infusion of inhibitors of autophagy do not affect spatial learning, but impair long‐term spatial memory. In contrast, post‐training infusion of the activator of autophagy Tat‐Beclin1 peptide improves long‐term memory. |
doi_str_mv | 10.1002/jnr.24121 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6425965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986601181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43</originalsourceid><addsrcrecordid>eNp1kd9KwzAUh4Mobk4vfAEpeKMXnUnapMmNMIZ_GQqi1yFtz7aOtplJq-zOR_AZfRIzN4cKXoRDcr58OeGH0CHBfYIxPZvVtk9jQskW6hIskzBmcbKNujjiOIwxoR2059wMYywli3ZRh0oaYcFYF40GgTUlBGNjA902Zj7Vk0VQ1EFp6snH23sDtgrcXDeFLoMKKmMXS7byB6ZecpX2t63JoW7cPtoZ69LBwbr20NPlxePwOhzdX90MB6MwY1iSELSAXJCEJiSiwIFHlHJNsd-lMuU0ASx4CjnViYBESJpmLNVU8CiVIs3jqIfOV955m1aQZ_5tq0s1t0Wl7UIZXajfnbqYqol5UTymTHLmBSdrgTXPLbhGVYXLoCx1DaZ1isiESb8i6dHjP-jMtLb23_OU4BwTIoinTldUZo1zFsabYQhWy4yUz0h9ZeTZo5_Tb8jvUDxwtgJeixIW_5vU7d3DSvkJXxKcCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986601181</pqid></control><display><type>article</type><title>A role for autophagy in long‐term spatial memory formation in male rodents</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hylin, Michael J. ; Zhao, Jing ; Tangavelou, Karthikeyan ; Rozas, Natalia S. ; Hood, Kimberly N. ; MacGowan, Jacalyn S. ; Moore, Anthony N. ; Dash, Pramod K.</creator><creatorcontrib>Hylin, Michael J. ; Zhao, Jing ; Tangavelou, Karthikeyan ; Rozas, Natalia S. ; Hood, Kimberly N. ; MacGowan, Jacalyn S. ; Moore, Anthony N. ; Dash, Pramod K.</creatorcontrib><description>A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long‐term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc‐51‐like autophagy activating kinase‐1 (Ulk‐1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long‐term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long‐term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP‐LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3‐methyladenine (3‐MA) or Spautin‐1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT‐Beclin‐1) improved long‐term memory. These results indicate that autophagy is not necessary for learning, but is required for long‐term memory formation.
Using GFP‐LC3 transgenic mice, we provide evidence that spatial learning increases autophagosome formation in hippocampal neurons. Further, we show that intrahippocampal infusion of inhibitors of autophagy do not affect spatial learning, but impair long‐term spatial memory. In contrast, post‐training infusion of the activator of autophagy Tat‐Beclin1 peptide improves long‐term memory.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.24121</identifier><identifier>PMID: 29230855</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adenine - analogs & derivatives ; Adenine - pharmacology ; Animal memory ; Animals ; Antigens, Nuclear - metabolism ; Autophagy ; Autophagy - drug effects ; Autophagy - physiology ; Beclin-1 - metabolism ; Benzylamines - pharmacology ; Drugs ; Glial Fibrillary Acidic Protein - metabolism ; hippocampus ; Hippocampus - cytology ; Hippocampus - drug effects ; Hippocampus - metabolism ; Inhibitors ; Learning ; Long term memory ; Male ; Maze learning ; Maze Learning - drug effects ; Maze Learning - physiology ; Memory tasks ; Memory, Long-Term - drug effects ; Memory, Long-Term - physiology ; Memory, Short-Term - drug effects ; Memory, Short-Term - physiology ; Mice ; Microtubule-Associated Proteins - metabolism ; Nerve Tissue Proteins - metabolism ; Phagocytosis ; Phagosomes ; Phosphatidylinositol 3-Kinase - metabolism ; Phosphorylation ; Protein biosynthesis ; Protein synthesis ; Proteins ; Quinazolines - pharmacology ; Rapamycin ; Rats ; Rats, Long-Evans ; Recall ; Rodents ; Short term ; Short term memory ; Spatial analysis ; Spatial memory ; Spatial Memory - drug effects ; Spatial Memory - physiology ; TOR protein ; Training ; water maze</subject><ispartof>Journal of neuroscience research, 2018-03, Vol.96 (3), p.416-426</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43</citedby><cites>FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43</cites><orcidid>0000-0002-0426-7242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29230855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hylin, Michael J.</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Tangavelou, Karthikeyan</creatorcontrib><creatorcontrib>Rozas, Natalia S.</creatorcontrib><creatorcontrib>Hood, Kimberly N.</creatorcontrib><creatorcontrib>MacGowan, Jacalyn S.</creatorcontrib><creatorcontrib>Moore, Anthony N.</creatorcontrib><creatorcontrib>Dash, Pramod K.</creatorcontrib><title>A role for autophagy in long‐term spatial memory formation in male rodents</title><title>Journal of neuroscience research</title><addtitle>J Neurosci Res</addtitle><description>A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long‐term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc‐51‐like autophagy activating kinase‐1 (Ulk‐1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long‐term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long‐term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP‐LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3‐methyladenine (3‐MA) or Spautin‐1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT‐Beclin‐1) improved long‐term memory. These results indicate that autophagy is not necessary for learning, but is required for long‐term memory formation.
Using GFP‐LC3 transgenic mice, we provide evidence that spatial learning increases autophagosome formation in hippocampal neurons. Further, we show that intrahippocampal infusion of inhibitors of autophagy do not affect spatial learning, but impair long‐term spatial memory. In contrast, post‐training infusion of the activator of autophagy Tat‐Beclin1 peptide improves long‐term memory.</description><subject>Adenine - analogs & derivatives</subject><subject>Adenine - pharmacology</subject><subject>Animal memory</subject><subject>Animals</subject><subject>Antigens, Nuclear - metabolism</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - physiology</subject><subject>Beclin-1 - metabolism</subject><subject>Benzylamines - pharmacology</subject><subject>Drugs</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Inhibitors</subject><subject>Learning</subject><subject>Long term memory</subject><subject>Male</subject><subject>Maze learning</subject><subject>Maze Learning - drug effects</subject><subject>Maze Learning - physiology</subject><subject>Memory tasks</subject><subject>Memory, Long-Term - drug effects</subject><subject>Memory, Long-Term - physiology</subject><subject>Memory, Short-Term - drug effects</subject><subject>Memory, Short-Term - physiology</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Phagocytosis</subject><subject>Phagosomes</subject><subject>Phosphatidylinositol 3-Kinase - metabolism</subject><subject>Phosphorylation</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Quinazolines - pharmacology</subject><subject>Rapamycin</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Recall</subject><subject>Rodents</subject><subject>Short term</subject><subject>Short term memory</subject><subject>Spatial analysis</subject><subject>Spatial memory</subject><subject>Spatial Memory - drug effects</subject><subject>Spatial Memory - physiology</subject><subject>TOR protein</subject><subject>Training</subject><subject>water maze</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kd9KwzAUh4Mobk4vfAEpeKMXnUnapMmNMIZ_GQqi1yFtz7aOtplJq-zOR_AZfRIzN4cKXoRDcr58OeGH0CHBfYIxPZvVtk9jQskW6hIskzBmcbKNujjiOIwxoR2059wMYywli3ZRh0oaYcFYF40GgTUlBGNjA902Zj7Vk0VQ1EFp6snH23sDtgrcXDeFLoMKKmMXS7byB6ZecpX2t63JoW7cPtoZ69LBwbr20NPlxePwOhzdX90MB6MwY1iSELSAXJCEJiSiwIFHlHJNsd-lMuU0ASx4CjnViYBESJpmLNVU8CiVIs3jqIfOV955m1aQZ_5tq0s1t0Wl7UIZXajfnbqYqol5UTymTHLmBSdrgTXPLbhGVYXLoCx1DaZ1isiESb8i6dHjP-jMtLb23_OU4BwTIoinTldUZo1zFsabYQhWy4yUz0h9ZeTZo5_Tb8jvUDxwtgJeixIW_5vU7d3DSvkJXxKcCg</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Hylin, Michael J.</creator><creator>Zhao, Jing</creator><creator>Tangavelou, Karthikeyan</creator><creator>Rozas, Natalia S.</creator><creator>Hood, Kimberly N.</creator><creator>MacGowan, Jacalyn S.</creator><creator>Moore, Anthony N.</creator><creator>Dash, Pramod K.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0426-7242</orcidid></search><sort><creationdate>201803</creationdate><title>A role for autophagy in long‐term spatial memory formation in male rodents</title><author>Hylin, Michael J. ; Zhao, Jing ; Tangavelou, Karthikeyan ; Rozas, Natalia S. ; Hood, Kimberly N. ; MacGowan, Jacalyn S. ; Moore, Anthony N. ; Dash, Pramod K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenine - analogs & derivatives</topic><topic>Adenine - pharmacology</topic><topic>Animal memory</topic><topic>Animals</topic><topic>Antigens, Nuclear - metabolism</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - physiology</topic><topic>Beclin-1 - metabolism</topic><topic>Benzylamines - pharmacology</topic><topic>Drugs</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Inhibitors</topic><topic>Learning</topic><topic>Long term memory</topic><topic>Male</topic><topic>Maze learning</topic><topic>Maze Learning - drug effects</topic><topic>Maze Learning - physiology</topic><topic>Memory tasks</topic><topic>Memory, Long-Term - drug effects</topic><topic>Memory, Long-Term - physiology</topic><topic>Memory, Short-Term - drug effects</topic><topic>Memory, Short-Term - physiology</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Phagocytosis</topic><topic>Phagosomes</topic><topic>Phosphatidylinositol 3-Kinase - metabolism</topic><topic>Phosphorylation</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Quinazolines - pharmacology</topic><topic>Rapamycin</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Recall</topic><topic>Rodents</topic><topic>Short term</topic><topic>Short term memory</topic><topic>Spatial analysis</topic><topic>Spatial memory</topic><topic>Spatial Memory - drug effects</topic><topic>Spatial Memory - physiology</topic><topic>TOR protein</topic><topic>Training</topic><topic>water maze</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hylin, Michael J.</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Tangavelou, Karthikeyan</creatorcontrib><creatorcontrib>Rozas, Natalia S.</creatorcontrib><creatorcontrib>Hood, Kimberly N.</creatorcontrib><creatorcontrib>MacGowan, Jacalyn S.</creatorcontrib><creatorcontrib>Moore, Anthony N.</creatorcontrib><creatorcontrib>Dash, Pramod K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hylin, Michael J.</au><au>Zhao, Jing</au><au>Tangavelou, Karthikeyan</au><au>Rozas, Natalia S.</au><au>Hood, Kimberly N.</au><au>MacGowan, Jacalyn S.</au><au>Moore, Anthony N.</au><au>Dash, Pramod K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A role for autophagy in long‐term spatial memory formation in male rodents</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J Neurosci Res</addtitle><date>2018-03</date><risdate>2018</risdate><volume>96</volume><issue>3</issue><spage>416</spage><epage>426</epage><pages>416-426</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>A hallmark of long‐term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long‐term memory formation without influencing short‐term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long‐term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc‐51‐like autophagy activating kinase‐1 (Ulk‐1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long‐term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long‐term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP‐LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3‐methyladenine (3‐MA) or Spautin‐1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT‐Beclin‐1) improved long‐term memory. These results indicate that autophagy is not necessary for learning, but is required for long‐term memory formation.
Using GFP‐LC3 transgenic mice, we provide evidence that spatial learning increases autophagosome formation in hippocampal neurons. Further, we show that intrahippocampal infusion of inhibitors of autophagy do not affect spatial learning, but impair long‐term spatial memory. In contrast, post‐training infusion of the activator of autophagy Tat‐Beclin1 peptide improves long‐term memory.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29230855</pmid><doi>10.1002/jnr.24121</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0426-7242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-4012 |
ispartof | Journal of neuroscience research, 2018-03, Vol.96 (3), p.416-426 |
issn | 0360-4012 1097-4547 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6425965 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adenine - analogs & derivatives Adenine - pharmacology Animal memory Animals Antigens, Nuclear - metabolism Autophagy Autophagy - drug effects Autophagy - physiology Beclin-1 - metabolism Benzylamines - pharmacology Drugs Glial Fibrillary Acidic Protein - metabolism hippocampus Hippocampus - cytology Hippocampus - drug effects Hippocampus - metabolism Inhibitors Learning Long term memory Male Maze learning Maze Learning - drug effects Maze Learning - physiology Memory tasks Memory, Long-Term - drug effects Memory, Long-Term - physiology Memory, Short-Term - drug effects Memory, Short-Term - physiology Mice Microtubule-Associated Proteins - metabolism Nerve Tissue Proteins - metabolism Phagocytosis Phagosomes Phosphatidylinositol 3-Kinase - metabolism Phosphorylation Protein biosynthesis Protein synthesis Proteins Quinazolines - pharmacology Rapamycin Rats Rats, Long-Evans Recall Rodents Short term Short term memory Spatial analysis Spatial memory Spatial Memory - drug effects Spatial Memory - physiology TOR protein Training water maze |
title | A role for autophagy in long‐term spatial memory formation in male rodents |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20role%20for%20autophagy%20in%20long%E2%80%90term%20spatial%20memory%20formation%20in%20male%20rodents&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Hylin,%20Michael%20J.&rft.date=2018-03&rft.volume=96&rft.issue=3&rft.spage=416&rft.epage=426&rft.pages=416-426&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.24121&rft_dat=%3Cproquest_pubme%3E1986601181%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5091-ea8ed81727132e6e63226a20132b9b627e086bed2a78e7892bc5ba2863b98bd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1986601181&rft_id=info:pmid/29230855&rfr_iscdi=true |